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1.0. OVERVIEW

Diffusion weighted imaging captures the orientation of white matter f ibers 

in the brain and can offer insight into human brain connectivity and function. 

Constrained Spherical Deconvolution (CSD) is a methodology used for estimating 

the distribution of f iber orientations using diffusion weighted imaging. CSD offers 

key advantages over the traditional diffusion tensor (DTI) model because CSD can 

additionally represent regions with multiple f iber orientations whilst DTI can only 

accurately represent a f iber bundle with a single orientation. This has implications 

in the ability to recreate white matter structures in regions of multiple f iber 

orientations. CSD can generate all the main tractographic structures that DTI can 

generate but has additional support for non-primary crossing f ibers.

CSD is typically used for f iber tracking algorithms to generate full brain 

tractography. In this process, a f iber tracking algorithm tracks white matter f ibers 

f rom seed points throughout the brain along the f iber directions calculated in 

CSD.

2.0. GENERAL BACKGROUND IN METHODS FOR 
GENERATING WHITE MATTER TRACTOGRAPHY

2.1. DIFFUSION OF WATER MOLECULES IN THE HUMAN BRAIN

White matter tracts in the brain are highly structured tissue. White matter is 

composed of bundles of long myelinated axons called tracts. The myelin sheaths 

that encircle neurons give white matter a unique diffusion prof ile. This can be 

seen in Figure 1 which demonstrates how water molecules can diffuse quickly 

along an axon but more slowly across it.

Axon

Axon

Faster

diffusion

Slower

diffusion

Figure 1 - The difference in diffusion speed 
along a white matter f iber axon as opposed 
to across an axon. Water molecules can 
diffuse quickly along the length of the 
white matter axons but diffuse slowly in 
a perpendicular direction because of the 
myelin sheath13
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Because water diffusion is so drastically different along the white matter axon 

as opposed to across it, white matter has a very heterogeneous water diffusion 

prof ile. Situations where water molecules can diffuse f reely in all directions is 

called isotropic whilst situations where there is a strong directionality to the 

diffusion of water molecules is called anisotropic as is illustrated in Figure 2. 

In this f ramework the diffusion of water in white matter f ibers can be described by 

its anisotropic component as there is a strong directionality along the axon of the 

f iber. The ability to measure the diffusivity of water in diffusion weighted imaging 

thus gives important information about the underlying structure of the white 

matter in the brain.

2.2. DIFFUSION WEIGHTED IMAGING

Diffusion weighted images capture the diffusivity of water molecules throughout 

the brain. Generally, this involves stimulating water molecules in different 

directions and measuring how easily water can diffuse. This category of MRI 

acquisition is called diffusion weighted because it aims to measure the diffusion

Figure 2 - The difference between isotropic and anisotropic diffusion. The quick diffusion of water 
along white matter axons and slow diffusion of water across white matter axons is called anisotropic 

because diffusion has a strong directionality to it. This is in contrast to equal diffusion in all 
directions which is called isotropic diffusion12

Isotropic diffusion
MD

Equal diffusion in all directions

Anisotropic diffusion
FA

Directionally constrained diffusion
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prof ile of the underlying brain tissue. Because white matter is anisotropic, careful 

measurement and interpretation of this diffusion weighted signal can offer insight 

into the white matter f ibers of the brain.

Diffusion weighted imaging sequences typically comprise of a series of 

acquisitions in different gradient directions and at least one baseline B0 scan. 

Gradient direction acquisitions involve sensitizing water molecules in different 

directions and measuring the degree of diffusion. There are different MRI pulse 

sequences that can stimulate and measure this effect. In its simplest form this 

involves dephasing and rephasing MR pulses where phase dispersion f rom 

diffusing molecules will lead to signal attenuation. In contrast if the water 

molecules are stationary and do not diffuse then signal attenuation will be 

minimal13.

Given that water diffuses faster along the length of a white matter f iber axon, a 

high degree of signal attenuation in a particular direction indicates that this is the 

length of a white matter f iber. Conversely, low signal attenuation in a particular 

direction implies that this is the wall of a white matter f iber myelin sheath. Thus 

a typical sequence of diffusion weighted imaging provides a measure for the 

diffusivity of water in different directions. The B0 baseline scan captures the 

tissue signals and contrasts in the absence of diffusion gradient. Using these two 

acquisitions forms a model for how f reely water can move in different directions 

and an initial representation of the underlying white matter f iber structures.

2.3. DIFFUSION TENSOR MODEL AND THE ISSUE OF CROSSING 	
    FIBERS

To interpret and analyze the diffusion weighted signal it is important to build 

a representation of the diffusion process within each voxel. The traditional 

methodology of doing this is diffusion tensor imaging (DTI). While DTI offers 

valuable additional information f rom DWI, it has known limitations when 

representing complex f iber orientations. 

In contrast, constrained spherical deconvolution (CSD) iterates upon DTI with a 

more advanced method that models the same f ibers as DTI as well as additional 

and  and more complex areas of multiple f iber orientations.
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2.3.1. BACKGROUND TO DTI

The traditional diffusion tensor imaging (DTI) model represents the orientation of 

f ibers in each voxel by a single primary direction. 

It involves f itting the diffusion weighted signal to a Gaussian model of water 

molecule displacement13. The “diffusion tensor” in this context is the 3x3 

covariance matrix of the Gaussian distribution. Here the major eigenvector 

points in the direction of the highest diffusion. In white matter this is akin to 

the direction of the axon bundle. One of the drawbacks of this system is that it 

assumes that there is a unique orientation of f ibers in each voxel7.

2.3.2. LIMITATIONS OF DTI IN COMPLEX FIBER ORIENTATIONS

The DTI model of f iber orientation is built on the assumption that a single 

f iber orientation in each voxel is suff icient. The presence of an additional f iber 

orientation is instead absorbed in calculating a single dominant orientation.

Unforunately, many regions of the brain are better represented by a “crossing 

f ibers” model, that is, situations where white matter f ibers pass by and cross over 

each other. This detail is not captured in the traditional DTI model.

Figure 3 illustrates the scenarios in which complex f iber orientations arise in the 

brain including crossing, bottlenecks, branching, fanning, and kissing situations. 

These are all situations in which DTI is challenged.
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2.3.3. CONSEQUENCES OF DTI’S LIMITATIONS WITH COMPLEX 	
      FIBER ORIENTATIONS

The inability of DTI to accurately model complex f iber orientations limits its 

applicability. In circumstances where the underlying f iber orientation is complex 

such as in the branching, fanning, or crossing scenarios portrayed in Figure 3, the 

resulting DTI tensor cannot accurately represent the data and results in a tensor 

which is an ellipsoid with an ill-def ined peak that doesn’t accurately correspond 

to any of the f iber populations. That is- not only is the presence of a non-primary 

f iber orientation missed, but the primary f iber orientation is also erroneously 

skewed.

Estimates place the proportion of white matter voxels that contain multiple 

f iber orientations at roughly 70%8. This is the case, for instance, in areas such as 

the corticospinal tract (CST), which critically challenges the DTI model because 

the crossing of the superior longitudinal fasciculus (SLF) leads to f ibers that the 

model cannot generate6. This implies that, whilst DTI offers an additional layer 

of information over DWI which proves to be useful for functional structures9, it 

remains unable to properly distinguish between crossing f ibers and those in a 

fanning pattern, a limitation that the CSD algorithm solves.

Figure 3 - The many situations in which complex f iber orientations arise in the brain11. Situations 
such as crossing f ibers, branching, and fanning require a more robust f iber orientation model to 

accurately represent and construct tractography with.

Fanning
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High anisotropy
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Figure 4 - A comparison of outputs between DTI (on the left) and CSD (on the right) in modelling the 
f iber response and reconstructing the Corticospinal Tract. The DTI model only assumes one direction per 
model by extracting its eigenvector while the CSD algorithm handles multiple crossing f ibers per voxel.

2.3.4. CSD AS AN ALTERNATIVE TO DTI

An alternative model to DTI which accommodates the issue of ‘crossing f ibers’ 

is the f iber orientation distribution (fODF) model that is supported by CSD. 

CSD calculates multiple tensors in heterogeneous regions and is thus able to 

support crossing f ibers and areas of multiple f iber orientations1. It captures the 

primary eigenvector signal that is generated in the DTI model but can additionally 

differentiate with and capture the presence of non-primary crossing f ibers. This 

enables CSD to accurately reconstruct white matter structures in regions such as 

the aformentioned CST. Figure 4 displays the difference between DTI and CSD 

in the f iber response model and how this leads to different outcomes in deeper 

analytics such as tractography.
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3.0. TECHNICAL INFORMATION ON CSD 
TRACTOGRAPHY

In addition to summarizing the mathematical methodology behind CSD, the 

following section describes a technical workflow to utilize CSD for whole brain 

tractography; in particular, the workflow used in Omniscient software.

3.1. PREPROCESSING

Prior to undergoing CSD transformation, images pass through a standard 

pre-processing pipeline consistent with DTI including motion correction and 

generation of a brain mask15.

3.2. FRACTIONAL ANISOTROPY (FA) MAP

The f ractional anisotropy (FA hereafter) map is a measure for the amount of 

diffusion asymmetry in each of the voxels. It is obtained by measurement f rom 

a tensor f it on the diffusion data. Therefore, areas with high FA values are those 

where there is relatively unrestricted diffusion in one particular direction. This is 

typically associated with areas where there is a dense packing of f ibers in a single 

direction. Figure 5 depicts a typical FA map of the brain where areas of highly 

directional dense white matter are whiter than the grey matter on the edge of the 

brain.
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3.3. CSD ALGORITHM

The CSD algorithm calculates the white matter f iber orientation distribution 

function (fODF) using diffusion weighted imaging data. This process involves 1) 

estimating the f iber response function and 2) using the f iber response function in 

the context of constrained spherical deconvolution to determine the fODF.

3.3.1. ESTIMATING THE FIBER RESPONSE FUNCTION

The f irst step in the CSD fODF calculation is the estimate of the f iber response 

function. The f iber response function is the expected signal in a voxel that 

contains a single and coherently oriented bundle of axons. Accordingly, it is 

helpful to look towards regions of the brain where it is known that there are single 

coherent f iber populations. The FA map is used here to identify regions where 

unrestricted diffusion implies a dense f iber bundle which are used to calculate the 

response function.

Figure 5 - An illustration of a FA map of the brain. Voxels with high diffusion directionality (those that 
are highly anisotropic) are whiter (corresponding to a higher f ractional anisotropy value)
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Figure 6 - The CSD model of f iber response equates the summation of diffusion weighted signals 
against the convolution of the f iber orientation diffusion function with the f iber response16

3.3.2 RECONSTRUCTING OF THE FODF

The CSD model then estimates the f iber orientation distribution (fODF) by 

assuming that the diffusion weighted signal captured can be adequately 

described by the f iber response function4. The assumption is that the diffusion 

weighted signal in each voxel is a summative combination of the f iber response 

f rom the multiple f ibers in each voxel. This is mathematically described as a 

“convolution” of the response function over the fODF as shown in Figure 6. 

Hence, the goal of CSD is to seperate each f iber response out by “deconvoluting” 

the fODF f rom the DW signal using the f iber response function described above. 

To achieve this, the process of CSD involves representing the fODF in a spherical 

harmonic basis which can take the form of both a positive or negative solution. 

A negative solution to fODF, however, is physically impossible and is purely a 

result of noise contamination as there is no such thing as negative white matter 

orientation4. One of the innovations of CSD is therefore to penalize negative 

amplitudes through a soft regularizer in the least-squares f it of the coeff icients of 

the fODF to the diffusion weighted signal. This soft regularizer penalises negative 

amplitudes in the fODF coeff icients which does not guarantee a non-negative 

solution but prefers one. Herein lies the “constrained” nature of constrained 

spherical deconvolution which vastly increases eff iciency and robustness to 

noise, and enables the resolution of complex f iber orientations where f ibers are 

separated by small angles.
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Completing this, the fODF generated through CSD contains all the primary 

eigenvector directions that are calculated via DTI but with additional tensor peaks 

representing the non-primary f ibers.

3.4. FIBER TRACKING

Once the fODF has been calculated, whole brain tractography can be conducted 

by pairing f iber direction data with a set of seed points to def ine start points 

and stopping criteria in the process of f iber tracking. With these criteria and 

input parameters def ined a deterministic f iber tracking algorithm can generate 

individual white matter f iber bundles called streamlines. The extension of individual 

streamlines to the entire brain is called whole brain tractography. 

3.4.1. OVERVIEW OF FIBER TRACKING

Whole brain tractography is the cumulative and iterative process of tracking 

streamlines f rom seed points along the primary tensor directions until they reach 

a stopping point. Figure 7 depicts the flow of streamline accumulation and the 

iterative process of repeatedly tracking a streamline f rom one voxel to the next 

until it meets the stopping criteria.

Figure 7 - The iterative process of f iber tracking. This flow chart describes the procedure through 
which each seed point is used to start a streamline, the streamline is tracked along peak tensor 
directions until it meets each stopping criteria. The collection of streamlines across all the seed 

points culminates in whole brain tractography.
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3.4.2. PART A - SEED POINTS

Seeding points are the start points of the f iber tracking. Voxels in which there is 

suff iciently high FA (set in line with f ield standards1,2) are retained as ideal voxels 

to set seed points and used as such. Multiple seeds are distributed uniformly 

through each eligible voxel. The use of FA threshold to determine seed points 

alleviates the risk of missing any potential streamlines and creating any erroneous 

streamlines. Voxels with high FA values are those that have a strong directionality 

to the diffusion of water. This is a feature of white matter f iber bundles. Hence 

using the FA map to determine seed points gives assurance that streamlines are 

being traced f rom all eligible white matter bundle points. 

3.4.3. PART B - STOPPING CRITERIA

A set of criteria for which f iber tracking should stop is used to enforce the end 

points of white matter f ibers. One criterion is that f ibers are only tracked through 

voxels in which the FA value is above the threshold suff icient for white matter. A 

second criterion is that the distance between other f ibers is above a minimum 

threshold for separation (set in accordance with f ield standards1,2). This ensures 

that individual f ibers are tracked throughout the white matter areas of the brain.

3.4.4. PART C - CSD TENSOR DIRECTIONS

Fibers are tracked f rom seed voxel points along the peak directions f rom the 

f iber orientation distribution function (fODF). The fODF is the outcome of CSD 

applied to a diffusion weighted signal. Each voxel will have multiple CSD peaks 

representing the different f iber orientations of the complex underlying white 

matter structure. 

3.4.5. PART D - ITERATIVE FIBER TRACKING

For each iteration, this algorithm tracks a f iber f rom a seeded voxel point using 
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stopping criteria. Fibers are tracked along the peak direction in both directions, 

linking one voxel to another via a streamline in 3D space until the stopping criteria 

is met3. The peak direction for initiating a track f rom a seed, and for propagating 

a track throughout the brain is based on a combination of the tensor peaks of the 

surrounding voxel centers f rom that point. 

Figure 8 shows the f iber tracking process f rom seed points along the peak 

directions and how this constructs the streamlines (shown on the left side of the 

f igure). When the stopping criteria is met this streamline is saved and the next 

seed point is used for tracking. 

Figure 9 shows the f iber tracking process f rom seed points in an area of crossing 

f ibers. Here there are multiple peaks in the voxels surrounding the seed point so 

the f iber tracking algorithm propagates tracks in each peak direction.

This algorithm gives completely deterministic results f rom the same seed points. 

That is to say, since the seed points are f ixed, then repeating the f iber tracking 

process will generate the same set of streamlines.

Figure 8 - The f iber tracking process f rom seed points along the peak direction f rom voxel to voxel. 
Fiber tracking begins at the seed points and continues in the direction of each of the CSD peaks 

until it reaches any of the stopping criteria. Low FA is a termination point.
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3.4.6. PART E - BUILDING UP TO WHOLE BRAIN TRACTOGRAPHY  	
	  FROM STREAMLINES

This algorithm is run until all the seeds have been utilized as starting points. Each 

seed point will generate multiple f ibers as the f iber is tracked in each of the peak 

directions. Iterating over each seed point forms a collection of streamlines. Once 

seed points throughout all eligible voxels have been completed the resulting set 

of streamlines forms a whole brain tractography.

Iteration 1
fiber
propagation

Voxel
peaks

Seed
point

Iteration 2
fiber
propagation

Voxel
peaks

Seed
point

1 2

Figure 9 - Fiber tracking f rom a seed in an area of crossing f ibers. Black dots represent voxel centers 
and the red vector arrows represent tensor peaks. A seed point (the blue star) is within a crossing 

region, identif iable because there are multiple peaks in the voxels surrounding the point. The f iber 
tracking algorithm propagates tracks in each peak direction. After a f irst pass on the primary peak 

the f iber track in (1) is generated. A second pass occurs on the secondary peak resulting in the f iber 
track (2) being generated 3.
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