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A B S T R A C T

Background: The dorsal premotor area (DPM) plays an important role in hand coordination and muscle re-
cruitment for lifting activities. Lesions in the area have demonstrated that the DPM is critical in the integration of
movements that require combinations of reaching, grasping, and lifting. While many have looked at its func-
tional connectivity, few studies have shown the full anatomical connectivity of DPM including its connections
beyond the motor network. Using region-based fMRI studies, we built a neuroanatomical model to account for
these extra-motor connections.
Objective: In this study, we performed meta-analysis and tractography with the goal of creating a map of the
dorsal premotor network using the Human Connectome Project parcellation scheme nomenclature (i.e. the
Glasser Atlas). While there are other possible ways to map this, we feel that it is critical that neuroimaging begin
to move towards all of its data expressed in a single nomenclature which can be compared across studies, and a
potential framework that we can build upon in future studies.
Methods: Thirty region-based fMRI studies were used to generate an activation likelihood estimation (ALE) using
BrainMap software (Research Imaging Institute of Texas Health Science Center San Antonio). Cortical parcel-
lations overlapping the ALE were used to construct a preliminary model of the Dorsal Premotor Area. Diffusion
spectrum imaging (DSI) based tractography was performed to determine the connectivity between cortical
parcellations and connections throughout cortex. The resulting connectivities were described using the cortical
parcellation scheme developed by the Human Connectome Project (HCP).
Results: Three left hemisphere regions were found to comprise the Dorsal Premotor Area. These included areas
6a, 6d. and 6v, Across mapped brains, these areas showed consistent interconnections between each other.
Additionally, ipsilateral connections to the premotor cortex, sensorimotor cortex, superior and inferior parietal
lobule, middle and inferior frontal gyrus, and insula were demonstrated. Connections to the contralateral sup-
plementary motor area and premotor cortex were also identified.
Conclusions: We describe a preliminary cortical model for the underlying structural connectivity of the Dorsal
Premotor Area. Future studies should further characterize the neuroanatomic underpinnings of this network.

1. Introduction

The dorsal premotor area (DPM) is a critical component of the
motor network. It is known to aid in the coordination of reaching and
grasping actions, complex hand movements, and muscle recruitment
during lifting [1–10]. Lesions to the DPM explain its particular role in
the integration of grasping and lifting movements [2,3,7]. The DPM has
also been shown to be active in the learning of sequence-specific vi-
suomotor sequences [11,12], and more recently, the DPM has been

functionally linked to auditory-motor integration and response
[13–16].

While the functional significance of the DPM is well established, the
underlying structural connectivity of this part of the cerebral cortex has
not been described in any great detail. To date, there are few studies
that detail the anatomical map of the DPM with its complete cortical
connection patterns. Identifying and describing the extra-motor con-
nections between the DPM and other parts of the cerebral cortex is of
particular interest as such connections may explain how the motor
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network modulates cerebral activity beyond motor function.
In this study, we constructed a model of the DPM based on the

cortical parcellation scheme published from the Human Connectome
Project (HCP) [17]. Using relevant task-based functional magnetic re-
sonance imaging (fMRI) studies and BrainMap (Research Imaging In-
stitute of Texas Health Science Center San Antonio), a collection of
open-access software programs used to generate activation likelihood
estimations (ALE) from fMRI studies, we identified the key cortical

areas involved in the DPM. After identifying these regions of interest,
we performed diffusion spectrum imaging (DSI) based fiber tracto-
graphy to determine the structural connectivity between parcellations,
both within and beyond the motor network. Our goal is to provide a
more detailed anatomic model of the DPM and its extra-motor con-
nections for use in future studies.

Fig. 1a. Representative sagittal images on a sample MNI brain showing the generated ALE of the DPM.
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2. Methods

2.1. Literature search

We utilized BrainMap Sleuth 2.4 (Research Imaging Institute of
Texas Health Science Center San Antonio) on July 20, 2017 to search
for all relevant task-based fMRI studies related to the dorsal premotor
area [18–20]. We used the keyword search algorithm for terms related

to the dorsal premotor cortex or premotor cortex, or for studies related
to motor function (behavioral domain is related to action execution or
imagination or response type is related to motor activity, such as finger
tapping or flexion/extension) to identify all studies connecting DPM
motor activity to other parts of the cortex. Studies were included in our
analysis if they met the following criteria: (1) peer-reviewed publica-
tion, (2) task-based fMRI study related to the DPM cortex, (3) based on
whole-brain, voxel-wise imaging, (4) including standardized

Fig. 1b. Representative axial images on a sample MNI brain showing the generated ALE of the DPM.
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coordinate-based results in the Talairach or Montreal Neuroimaging
Institute (MNI) coordinate space, and (5) including at least one healthy
human control cohort. Only coordinates from healthy subjects were
utilized in our analysis. Resting state studies were excluded from our

analysis. Overall, 30 papers related to the DPM met criteria for inclu-
sion in this study [21–50].

2.2. Creation of 3D regions of interest

The three-dimensional regions of interest (ROIs) used in this study
were generated from data previously published by the HCP authors
[17]. In their study, the authors used surface-based greyordinates to
study 180 cortical ROIs. Greyordinate data were converted to volu-
metric dimensions using the Connectome Workbench command line
interface (Van Essen Laboratory, Washington University 2016). A single
ROI was generated for each of the parcellations identified by the HCP
authors [17].

2.3. ALE generation and identification of relevant cortical regions

The activation coordinates cited within each experiment from the
literature search were exported in MNI space from BrainMap Sleuth 2.4
to use in BrainMap GingerALE 2.3.6 (Research Imaging Institute of
Texas Health Science Center San Antonio). GingerALE utilizes the MNI
co-ordinates and the corresponding studies' sample size to create an
activation likelihood estimation (ALE) [51–53]. An ALE models the
likely convergence of foci based on MNI coordinates and is commonly
used in meta-analyses of fMRI data to demonstrate areas of activity that
are associated with a task or brain network, in this case it is to de-
termine the network of the DPM [51]. The ALE was created using a
single study analysis with cluster-level interference (cluster level of
0.05, threshold permutations of 1000, uncorrected p-value of 0.001).
The ALE coordinate data were displayed on an MNI-normalized tem-
plate brain using the Multi-image Analysis GUI (Mango) 4.0.1 (ric.
uthscsa.edu/mango). The pre-constructed ROIs of the parcellations
were then overlaid on the ALE and compared visually for inclusion in
the network. Tasks which activate the DPM will also generally activate
the motor cortex, thus areas that form a part of the primary motor
cortex were excluded from the model of the DPM.

2.4. Tractography

All fiber tractography was done in DSI Studio (http://dsi-studio.
labsolver.org) using publicly available brain imaging from the Human
Connectome Project (http://humanconnectome.org, release Q3)
[54,55],. Tractography was performed individually with 10 randomly
chosen adult subjects. A multi-shell diffusion scheme was used, with b-
values of 990, 1985, and 2980 s/mm2. Each b-value was sampled in 90
directions. The in-plane resolution was 1.25 mm. The slice thickness
was 1.25 mm. The diffusion data were reconstructed using generalized
q-sampling imaging [56]. The diffusion sampling length ratio was 1.25.

All reconstructions were performed in MNI space using a region of
interest (ROI) approach to initiate fiber tracking from a seeded region
[57]. Grey ordinate label parcellation fields were standardized to the
three-dimensional volumetric working spaces of DSI studio using the
structural imaging data provided by HCP for each subject [58]. Voxels
within each ROI were automatically traced with a maximum angular
threshold of 45 degrees. When a voxel was approached with no tract
direction or a direction greater than 45 degrees, the tract was halted.
Tracks with length shorter than 30 mm or longer than 300 mm were
discarded. In some instances, exclusion ROIs were placed to exclude
spurious tracts or tracts inconsistently represented across individuals.
Tracts were considered meaningful between parcellations if they could
be identified consistently in five or more subjects.

3. Results

3.1. ALE regions and their corresponding parcellations

Fig. 1a and 1b demonstrates the ALE of the 30 relevant fMRI studies

Fig. 2. Comparison overlay images between cortical parcellation and ALE data.
(Panel 1): with 6a, (Panel 2): with 6d, (Panel 3): with 6v, (Panel 4): with 3b,
(Panel 5): with 1, (Panel 6): with 4.
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included in our meta-analysis. The highlighted regions in Fig. 1a and 1b
correspond to the ALE of the DPM and are identified in the precentral
and postcentral gyri. For simplicity, only regions in the left cerebral
hemisphere were included in this analysis. Three parcellations were
found to overlap the ALE data in the region of the DPM: 6a, 6d, and 6v.
Areas 3b, 1 and 4 also overlapped the ALE data, however they were
excluded from our model of the DPM as they are regions of the Primary
Motor Area. Comparison overlays between the cortical parcellation
data and the ALE data are shown in Fig. 2.

3.2. Structural connectivity of the dorsal premotor area

Tractography was utilized to determine the underlying structural
connections of the DPM outside the motor network. ROIs showed
consistent local connections between adjacent parcellations. Both ipsi-
lateral and contralateral connections are shown for each individual
parcellation with an additional overlay including all DPM connections
to the brainstem and a full overlay of all DPM projections throughout
the cerebral cortex. The connections found consistently across all 25
subjects included in our analysis are summarized in Figs. 3 through 5. A
summary map is shown in Fig. 6. A schematic showing the average
number of tracts is shown in Fig. 7. Table showing all average numbers
is shown in Table 1.

4. Discussion

In this study, we performed meta-analysis and tractography with the
goal of creating a map of the dorsal premotor network using the Human
Connectome Project parcellation scheme nomenclature (i.e. the Glasser

Atlas). While there are other possible ways to map this, such as in-
traoperative mapping, this paper aims to provide a foundational ana-
tomic work to support future exploratory work. We feel that it is critical
that neuroimaging begin to move towards all of its data expressed in a
single nomenclature which can be compared across studies, and a po-
tential framework that we can build upon in future studies.

4.1. Connections to the premotor cortex

The DPM and its associated parcellations show extensive connec-
tions with many other premotor parcellations not considered part of
DPM. Area 6d has connections with premotor area 6a. Additionally,
area 6a showed contralateral connections to premotor areas 55b-R, 6a-
R, and PEF-R, and area 6d showed contralateral connections to pre-
motor areas PEF-R and 55b-R. While it could seem obvious that the
dorsal premotor area as described in this paper has connections to many
other areas classically associated with a “premotor” function, these
connections could explain some of the functional specificity associated
with DPM exclusively. The premotor cortex has long been associated
with its ability to facilitate movement [8] but additionally, and more
specifically, these connections outside of DPM to additional premotor
areas could explain the DPM activation seen in activities such as visual
attention, via FEF, and language-related activities, areas 55b and 6r
[59–61]. Specifically, connections to these language-related areas could
explain some the newly suggested functions of DPM such as auditory-
motor integration and response. Finally, it was recently demonstrated
that a distinct sub-region within the left DPM area supported abstract
cognitive functions [62].

Fig. 3. Diffusion tractography showing connections of parcellations with 6a. (A): with 7AL, (B): with 3 ac, (C): with MI, (D): with 8AV, (E): with FOP4, (F): with
SCEF-R, (G): with SFL-R, (H): with 6ma-R, (I): with PFE-R, (J): with 55b-R, (K): with 8AV-R, (L): with 6a-R.
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4.2. Connections to the supplementary motor area

Area 6a showed connections to contralateral areas deemed to be a
part of the Supplementary Motor Area (SMA) including SCEF-R, SFL-R,
and 6ma-R. Additionally, area 6d of the DPM showed connections to
contralateral SMA area 6mp-R. SMA has been shown to be involved in a
variety of both internally and externally cued tasks including reaching,
grasping, and speech [63–67]. These are functions that have also been
attributed to regions located within DPM, and these white matter
connections could serve as an explanation of function.

4.3. Connections to the sensorimotor cortex

Areas 6a of the DPM showed connections to area 3a of the sensor-
imotor cortex. Area 3a is known to receive information regarding

information from deep body tissues [68]. This type of sensation is
especially important in a chronic pain setting [69]. Additionally, area
3a is known to be involved in proprioceptive sensation [69]. In terms of
proprioception especially, a functional relationship can be clearly ob-
served between the areas of DPM and 3a. Proprioception is a critical
aspect to many of the complex hand movements and reaching/grasping
actions generated by DPM. This anatomical connection to an area of
proprioception could explain what allows DPM to coordinate such
movements.

4.4. Connections to the inferior and superior parietal lobules

Area 6v of DPM showed connections to IPL area PFm. IPL has been
implicated in spatial perception and also integration of visuomotor
tasks [70]. The ability to perceive distance and integrate visual cues

Fig. 4. Diffusion tractography showing connections of parcellations with 6d. (A): with 8AV, (B): with 6a, (C): with MI55b-R, (D): with 6mp-R, (E): with 4, (F): with
PFE-R.

Fig. 5. Diffusion tractography showing connections of parcellations with 6v. (A): with 1, (B): with PFm, (C): with AIP.

J.R. Sheets, et al. Journal of the Neurological Sciences 415 (2020) 116907

6



into motor tasks would seem to be a critical aspect of many of the
functions associated with DPM activity. Such reaching/grasping, lifting,
and complex hand movements could not be achieved without a sig-
nificant amount of perceptive ability and visuomotor integration, likely
provided by area IPL. Additionally, area 6v of the DPM showed con-
nections to area AIP of the Superior Parietal Lobule (SPL). Area 6a of
the DPM also showed connections to 7AL of the SPL. Regions of the SPL
have been suggested to function in visually-guided motor tasks and also
in creating an internal representation of one's whole body in space, two
functions critical to many of the roles associated with DPM activity
[71]. Moreover, it was recently demonstrated that the SPL and DPM
differ significantly in hand trajectory planning: the former was re-
cruited only during simple and straight hand trajectories, but the latter
is recruited during computationally-intensive and complex reach
planning [62].

4.5. Connections to the left middle and inferior frontal gyrus

Areas 6a and 6d of DPM showed connections to area 8AV of the
Middle Frontal Gyrus (MFG). The Left MFG has been implicated in as-
pects of executive function including action selection, action inhibition,
and verbal fluency/processing [72–75]. These aspects of executive
function are especially important to many of the roles attributed to
DPM, and these functional connections that were observed could serve

to explain DPM functionality.

4.6. Connections to the insula

Area 6a of DPM showed connections to Insula areas MI and FOP4.
The insula is proposed to be involved in coordinating motor responses
to relevant environmental stimuli [76]. These responses could be au-
tomatic in nature and anatomical connections of DPM to Insula could
explain some of the functions that have been attributed to DPM areas.
Specifically, DPM is known to play a role in visuomotor sequence
learning and auditory-motor integration [11–16]. Insular connections
could attribute to reflexive responses of this nature.

5. Conclusions

We present a preliminary anatomic model of the dorsal premotor
area and its connections within and beyond the motor system. Further
studies may refine this model with the ultimate goal of clinical appli-
cation.

Compliance with ethical standards

All research was conducted to the highest ethical standards. No
aspect of this study involved human participants or animals, and so

Fig. 6. Diffusion tractography showing all parcellations and basic model of the DPM: 6a, 6d and 6v in coronal, sagittal and axial planes.
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informed consent was not required. Institutional review board approval
was not required to conduct this study.
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Table 1
Type and average strength of connection (± standard error) in the DPM net-
work.

Left_6d Left_6v Left_6a

Left_6d – 92.40 (± 57.63) 1897.92 (± 355.78)
Left_6v 92.4 (±57.63) – 91.20 (±44.71)
Left_6a 1897.92 (± 355.78) 91.20 (± 44.71) –
Left_3a 770.32 (± 122.66) 324.56 (±124.94) 255.2 (±81.85)
Left_7AL 61.20 (± 38.16) 14.4 (± 13.50) 26.56 (±15.49)
Left_8Av 194.00 (± 94.15) 176.56 (±53.37) 839.68 (± 214.90)
Left_FOP4 45.68 (± 36.71) 136.08 (±101.94) 92 (±57.18)
Left_MI 62.32 (± 29.83) 89.92 (± 78.09 60.48 (±29.15)
Left_AIP 100.48 (± 47.60) 80.24 (± 50.00) 99.52 (±44.29)
Left_PFm 54.24 (± 42.68) 83.36 (± 65.34) 75.04 (±38.99)
Right_PEF 1.36 (±1.36) 2.64 (± 1.96) 1.84 (± 1.85)
Right_55b 3.12 (±3.04) 5.92 (± 4.67) 9.20 (± 5.65)
Right_SFL 39.52 (± 38.03) 22.08 (± 19.31) 91.20 (±67.09)
Right_SCEF 47.52 (± 36.81) 24.64 (± 19.45) 77.04 (±51.85)
Right_6ma 13.12 (± 12.79) 11.52 (± 10.87) 21.68 (±20.44)
Right_6mp 43.2 (±18.56) 11.04 (± 8.44) 30.08 (±16.10)
Right_8Av 8.16 (±8.16) 10.16 (± 9.99) 11.84 (±11.43)
Right_6a 3.04 (±2.35) 7.04 (± 3.43) 4.32 (± 3.92)
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