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Abstract
Background. Large-scale brain networks and higher cognitive functions are frequently altered in neuro-oncology 
patients, but comprehensive non-invasive brain mapping is difficult to achieve in the clinical setting. The objective 
of our study is to evaluate traditional and non-traditional eloquent areas in brain tumor patients using a machine-
learning platform.
Methods. We retrospectively included patients who underwent surgery for brain tumor resection at our Institution. 
Preoperative MRI with T1-weighted and DTI sequences were uploaded into the Quicktome platform. We categor-
ized the integrity of nine large-scale brain networks: language, sensorimotor, visual, ventral attention, central ex-
ecutive, default mode, dorsal attention, salience and limbic. Network integrity was correlated with preoperative 
clinical data.
Results. One-hundred patients were included in the study. The most affected network was the central executive 
network (49%), followed by the default mode network (43%) and dorsal attention network (32%). Patients with 
preoperative deficits showed a significantly higher number of altered networks before the surgery (3.42 vs 2.19,  
P < .001), compared to patients without deficits. Furthermore, we found that patients without neurologic deficits 
had an average 2.19 networks affected and 1.51 networks at-risk, with most of them being related to non-traditional 
eloquent areas (P < .001).
Conclusion. Our results show that large-scale brain networks are frequently affected in patients with brain tumors, 
even when presenting without evident neurologic deficits. In our study, the most commonly affected brain net-
works were related to non-traditional eloquent areas. Integrating non-invasive brain mapping machine-learning 
techniques into the clinical setting may help elucidate how to preserve higher-order cognitive functions associated 
with those networks.

Key Points

• Brain networks are frequently altered in patients with brain tumors.

• These alterations are even present in patients with normal standard neurologic 
examination.

• Affected brain networks are regularly associated with non-traditional eloquent areas.

Using machine learning to evaluate large-scale brain 
networks in patients with brain tumors: Traditional and 
non-traditional eloquent areas
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The main objective of brain tumor surgery is to provide the 
best oncologic surgical treatment along with the best pos-
sible neurological outcome. While increasing tumor volume 
resection improves survival, new postoperative neurolog-
ical deficits are associated with a decreased quality of life 
and overall survival.1,2 Several methods for the preoperative 
mapping of traditional eloquent areas comprising the lan-
guage,3–5 visual6 and sensorimotor7–9 networks are routinely 
used for preoperative surgical planning. Imaging techniques 
such as diffusion tensor imaging (DTI), repetitive navigated 
transcranial magnetic stimulation (rTMS), and resting-state 
or task-based functional MRI are the most common modal-
ities used, but they require expert personnel and logistics 
that are not available at many institutions.

Furthermore, patients’ quality of life can be affected by 
postoperative deficits in other areas, affecting their per-
sonality,10 executive,11 visuospatial,12 metacognition,13 
semantic,14 memory,15 or other cognitive functions.16,17 
Preserving these functions requires a deeper under-
standing of the “non-traditional” eloquent areas such as 
those that comprise the salience, default mode, limbic, 
central executive, and dorsal attention networks.18–21 When 
non-traditional eloquent areas are damaged, less objec-
tively obvious neurologic deficits or cognitive impairments 
can occur, which may nonetheless be devastating to the 
patient’s quality of life. To address this, we must look be-
yond the traditional localizationist concept,22 and towards 
a connectome-based preoperative assessment. In the 
localizationist paradigm,23 function has been historically 
attributed to specific anatomical areas, such as Broca’s 
area for speech articulation or Wernicke’s area for language 
comprehension. Our current understanding of the com-
plex map of the structures and connections that form the 
“brain connectome”,24 allows the construction of a contem-
porary brain mapping paradigm that recognizes function 
as part of the role of large-scale brain networks and sub-
networks,25 instead of fixed anatomical areas.

Developing mapping tools that allow identification of 
traditional or non-traditional eloquent areas is necessary 
to minimize the risk of neurologic deficits. To achieve that 
goal, new technologies allowing automated reconstruc-
tion of white matter tracts, cortical parcellations and ul-
timately, brain networks, are being developed. Most 

rely on the positions of functional areas in relation to a 
normal brain atlas, and thus are often unable to map sig-
nificantly abnormal brain shapes, such as those with 
brain tumors. QuicktomeTM is a novel cloud-based plat-
form that uses machine-learning and reparcellation tech-
niques to accurately map brain networks in brains with 
anomalous anatomy. The objective of this study is to use 
the Quicktome platform to identify how brain tumors af-
fect large-scale networks, as well as traditional and 
non-traditional eloquent areas.

Methods

Patient Selection

After institutional review board approval was obtained, we 
retrospectively included all consecutive adult patients with 
primary or secondary intra-axial brain tumors who were 
treated at our Institution between the 16th of February and 
the 15th of October of 2021. Additional inclusion criteria 
included patients with available preoperative contrast-
enhanced MRI with T1-weighted and high-resolution 
Diffusion Tensor Imaging (DTI) sequences.

Exclusion criteria included skull lesions, pituitary tu-
mors, skull base tumors, meningiomas and infratentorial 
lesions.

MRI Acquisition

Preoperative MRI images were obtained in a 3 T scanner 
(Siemens Magnetom Vida, Germany). The acquisition of 
the preoperative contrast-enhanced MRI was performed 
the day prior to surgery, as part our institutional imaging 
protocol. The MRI protocol can be found in Supplementary 
material.

Data Processing and Evaluation

Pre- and post-operative contrast-enhanced MRI im-
ages containing T1-weighted and high-resolution DTI 

Importance of the Study

Large-scale brain networks and higher cog-
nitive functions are frequently altered in 
neuro-oncology patients, but comprehen-
sive non-invasive brain mapping is difficult to 
achieve in the clinical setting. We conducted the 
first reported large-scale brain network anal-
ysis using a non-supervised machine-learning 
platform in patients with brain tumors. Our re-
sults show that the most commonly affected 
brain networks were related to non-traditional 
eloquent areas, including the central executive, 
dorsal attention, and default mode networks. 

Furthermore, we found that patients with 
neurologic deficits had a significantly higher 
number of altered brain networks, compared 
to patients without deficits. Finally, we discov-
ered that non-traditional eloquent areas were 
frequently affected in patients found to be 
neurologically intact on a standard neurologic 
exam. Integrating non-invasive brain mapping 
machine-learning techniques into the clinical 
setting may help elucidate how to preserve 
higher-order cognitive functions associated 
with those networks.
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sequences were uploaded into the Quicktome (Omniscient 
Neurotechnology, Sydney, Australia) platform, an FDA-
approved software for network analysis. An overview 
of the data transmission between our Institution and the 

Quicktome platform can be found in Figure 1. Data was up-
loaded in a HIPAA-compliant fashion.

As previously described,26 Quicktome (Omniscient 
Neurotechnology, Sydney, Australia) is a machine learning 
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Figure 1. (A) Schematic diagram showing the workflow of the Quicktome Platform. Only points A (exporting dataset) and F (accessing the plat-
form using an internet browser) require manual input. All other steps (B, C, D and E) are automated do not require human interaction. (B) Qualitative 
network analysis of large-scale networks. White matter tracts are represented as multicolored lines, and cortical parcellations are visualized as 
groups of dots with the same color.
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based software that creates a subject-specific version 
of the Human Connectome Project (HCP)24 Multi-Model 
parcellation atlas. This is performed by using reparcellation 
based on structural connectivity instead of anatomic-based 
methods, which is more accurate in patients with a dis-
torted anatomy, as those with brain tumors. It requires two 
MRI sequences: a high-resolution Diffusion Tensor Imaging 
(DTI) scan, and T1-weighted contrast-enhanced anatomical 
scan. The software’s algorithm uses three steps to generate 
a subject-specific atlas:

 a)  Preprocessing step: to filter for distortion and mo-
tion in the underlying Diffusion Tensor Images.

 b)  Initial processing step: to register the HCP atlas to 
the patient’s brain images.

 c)  Refinement step: reviews the connectivity between 
parcellations using the DTI sequence and adjusts 
parcellations accordingly.

Automated, unsupervised rendering of the brain net-
works, tracts and parcellations is accessible on demand 
through an internet browser (Google Chrome® Version 
91.0, Google LLC, Mountain View, California). The platform 
allows to visualize large-scale brain networks, all the HCP 
Atlas parcellations segmented into the subject’s brain, and 
most tractography bundles. An example of Quicktome’s  
rendering of large-scale brain networks can be found on 
Figure 3, and the complete imaging protocol with specifi-
cations can be found as the Supplementary Data.

After the data was processed, we evaluated nine large-
scale brain networks21: language, sensorimotor, visual, 
central executive, default mode, dorsal attention, ventral at-
tention, salience, and limbic. We classified areas involving 
language, sensory, motor, and visual functions, as tradi-
tional eloquent areas, as these have been ubiquitously 
considered as eloquent in the literature. The ventral atten-
tion network, generally damaged in patients with spatial 
neglect, was also included as a traditional eloquent area.27 
We classified areas implicated in several other cognitive 
domains such as as attention, executive, and visuospatial 
functions,12 personality,10 theory of mind,28 memory,15 or 
emotional recognition29 as non-traditional eloquent areas.

All networks, tractography bundles, and parcellations 
were reviewed by a board-certified neurosurgeon, re-
cording severe tract misalignments or incorrect posi-
tioning of the parcellations.

Processing Speed of the Platform

To evaluate the role of the platform in our daily surgical set-
ting, we collected processing time of the Omniscient cloud 
server in all the datasets uploaded to the Quicktome plat-
form during the period of the study (point C in Figure 1A.). 
We decided to include all datasets to avoid re-identification 
of the patients in the Omniscient server and remain com-
pliant with our IT protocols.

Clinical and Radiographic Assessment

Relevant clinical data as demographics, tumor size and lo-
cation, pre-operative and post-operative deficits were as-
sessed using electronic medical records. The integrity of 

each network was analyzed in the Quicktome platform and 
they were classified in three categories: (Figure 1B):

 a)  Affected: Network had missing cortical regions 
(parcellations) or white matter fibers by the pres-
ence of the tumor.

 b)  At-risk: Network had parcellations or white matter 
fibers displaced by the mass effect of the tumor, or 
networks had parcellations or white matter fibers 
that may be damaged during the surgery due to 
proximity to the tumor and/or planned transcortical 
trajectory.

 c)  Not affected: Network had no damaged or displaced 
parcellations or white matter fibers because of the 
tumor.

This qualitative analysis was performed by two board-cer-
tified neurosurgeons and was achieved by visually 
inspecting the white matter tracts and parcellations (cor-
tical and sub-cortical) of each network. Both neurosurgeons 
were blinded to the history of the patient, included neuro-
logic deficits. Networks or tractography bundles affected 
were correlated with preoperative focal neurologic deficits.

Statistical Analysis

Statistical Analysis was performed with SPSS (IBM Corp. 
Released 2020. IBM SPSS Statistics for Windows, Version 
27.0. Armonk, NY) and GraphPad Prism version 8.0.0, 
(GraphPad Software, San Diego, California, USA). Means 
in normally and non-normally distributed variables were 
compared by the Student’s T-test, and Kruskal–Wallis test 
respectively. Categorical variables were assessed using χ2. 
Figures were created with BioRender.com.

Results

One hundred patients were included in the study, of which 
45% were female and 55% were males. The most common 
predominant tumor locations were temporal (n  =  37) and 
frontal (n  =  32) (Table 1). In 20 patients, the tumors were 
predominantly located in the parietal lobe, and the other 
seven patients presented with occipital tumors. Preoperative 
neurologic deficits were observed in 38% of patients (n = 38).

Quicktome Platform Analysis

All datasets (n  =  100) were successfully uploaded into 
the Quicktome platform (Version 1.1.1, Omniscient 
Neurotechnology, o8tTM). After individual visual inspec-
tion, no severe misalignments were found in any of the 
patients. Average processing time was 52 min (SD 10.82, 
range 17–81) (Figure 2).

Preoperative MRI and Large-Scale Network 
Analysis

Eighty-seven of 100 (87%) patients had at least one large-
scale network affected, and 98% of them had at least one 
network at-risk or affected.
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The most affected network was the central executive 
network (n  =  49), followed by the default mode net-
works (n = 43), and the dorsal attention network (n = 32), 
while the least affected were the visual (n  =  15), ven-
tral attention (n = 21), and language (n = 23) networks. 
Furthermore, the most frequent network at-risk was the 
dorsal attention network (n = 23), followed by the central 
executive network (n  = 21) (Table 2). A heatmap figure 
containing all patients and networks can in found in 
Figure 3.

Preoperative Focal Neurological Deficits

Patients with preoperative focal neurological deficits 
showed a significantly higher number of altered net-
works before the surgery compared to patients without 
focal neurologic deficits (3.42 vs 2.19 networks, P < .001). 
Furthermore, we found that patients without neuro-
logic deficits had an average 2.19 networks affected and 
1.51 networks at-risk, with most of them being related to 
non-traditional eloquent areas (P < .001).

Traditional vs Non-traditional Eloquent Areas

When we analyzed networks with traditional regions of el-
oquence, we found that they were affected at least once 
in 61% (n = 61) of the patients, and affected or at-risk in 
82% of them (n  =  82). Conversely, we found that net-
works involving non-traditional regions of eloquence were 

affected in 81% (n  =  81) of the patients, and affected or 
at-risk in 93% (n = 93) of them (Figure 3).

Discussion

In the current era, we have an unprecedented under-
standing of the brain connectome, leading to the iden-
tification of cerebral networks that are associated with 
specific neurologic functions. The Human Connectome 
Project (HCP), launched in 2010 and funded by the National 
Institutes of Health, aimed to characterize human brain con-
nectivity and develop improved neuroimaging methods.30 
By acquiring a dataset of unprecedented size, quality, res-
olution and diversity of imaging modalities, this project 
enabled the creation of a novel multimodal parcellation 
scheme of the human cerebral cortex. A machine-learning 
classifier was trained to recognize each cortical area, 
detecting 96.6% of the cortical areas in new individuals.24 
As has previously been published,31,32 preoperative as-
sessment of the connectome in patients with brain tu-
mors may predict important clinical variables as survival 
or performance status. When we adopt a “connectomics” 
perspective,33 we are able see beyond the tumor and the 
surgical approach, evaluating the whole brain and it’s net-
works (Figure 4). While recognizing how parcellations are 
connected creating large-scale networks is paramount in 
patient with brain tumors, translating these concepts into 
the neurosurgical practice has been difficult.

In our study, we used a machine learning based platform 
that creates a subject-specific version of the HCP atlas,24 
using diffusion tractography structural connectivity and 
machine learning algorithms to construct models of known 
large-scale brain networks,21,26,34 allowing for unsupervised 
visualization of brain networks in patients with brain tumors. 
This automated method was incorporated into our clinical 
setting with relative ease, as the only steps that required 
manual interaction were exporting the dataset and accessing 
the browser to visualize the studies (Figure 1). Processing 
time was on average 52.4 min, with most patients being pro-
cessed in less than 1 h. While the processing time itself was 
rather short, we discovered that the automated nature of the 
platform allowed us to maintain our tight surgical workflow 
without spending extra time on processing the datasets.

One of the main findings in the studied cohort, including 
100 consecutive patients with intra-axial lesions, was that 
most patients (89%) had at least one affected large-scale 
network. Networks involved in traditional regions of elo-
quence, such as the language, visual, VAN (associated with 
neglect syndromes) and sensorimotor networks, were 
found to be affected or at-risk in most patients (82%). On 
the other hand, networks involved in non-traditional re-
gions of eloquence, were found to be affected or at-risk 
almost all patients (93%). This can be explained in part by 
the slightly higher number of networks in the latter group, 
but it remains clear that patients with brain tumors pos-
sess a very high chance of having non-traditional eloquent 
networks affected. These networks are commonly involved 
in higher cognitive functions, so their correct preopera-
tive assessment generally involved specific tests and neu-
ropsychological expertise.35 While traditional eloquent 

  
Table 1. Patient demographics and tumor characteristics

Variable No. (%) 

Total no. of patients 100 (100%)

 Female 45 (45%)

 Male 55 (55%)

Median age in years, range

 All patients 61.06, 27–96

 Female 62.50, 27–96

 Male 61.87, 32–87

Predominant tumor location

 Temporal 37 (37%)

 Frontal 32 (32%)

 Parietal 20 (20%)

 Occipital 7 (7%)

 Other/multifocal 4 (4%)

Diagnosis

 Glioblastoma 45 (45%)

 Metastatic disease 28 (28%)

 Low grade glioma 16 (16%)

 High grade glioma 11 (11%)

Preoperative deficits

 Yes 38 (38%)

 No 62 (62%)
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networks as the VAN, sensorimotor, language and visual 
systems have been damaged in 15–30% of the patients in-
cluded in our study, we would like to focus our discussion 
on the non-traditional eloquence areas.

Non-traditional Eloquent Networks

Deficits in higher cognitive functions such as visuospatial 
ability, metacognition, or theory of mind can profoundly 
impact the quality of life of our patients. For instance, 
the processes that allow to understand and predict the 
emotions and mental states of others,36,37 known as 
mentalizing and theory of mind, are crucial to preserving 
social wellbeing in patients with brain tumors.38,39 These 
processes are closely related to the default mode network 
and include brain areas as the medial prefrontal cortex and 
the lateral parietal lobe, not traditionally labeled as “elo-
quent”. As it happens with other high-level cognitive func-
tions, patients may recover totally or partially after surgery, 
but recognizing this potential postoperative deficit is a nec-
essary element to include in the preoperative discussion 

with patients and their families. In our study, we found that 
the default mode network was the second most affected 
(43%) and considered at-risk in 19% of our patients.

The most affected network was the Central Executive 
Network, damaged in 49% of the patients and at-risk in 
21% of them. This network is associated to goal-oriented 
attention and other higher cognitive functions as general 
intelligence and executive functioning.40 In humans, it is 
specially involved in fluid cognition.41,42 This type of cogni-
tion is responsible for critical domains such as processing 
speed, quantitative reasoning, problem-solving skills, and 
adequate adaptation to new environments.43,44 Conversely, 
crystallized cognition refers to the knowledge and skills ac-
quired through education and cultural background and is 
associated with long-term memory.45 The former type of 
cognition is more labile in patients with brain tumors, and 
has been described by Lang et al.46 as impaired in almost 
40% of patients with diffuse gliomas in the frontal, tem-
poral or parietal lobes. In that study, crystallized cognition 
was affected in only 7% of the patients before the surgery, 
while 78% of the total cohort (n = 18) demonstrated a sig-
nificant deficit on one or more of the cognitive tests.
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Figure 2. (A) and (B) Heatmap describing tumor location and large-scale network analysis in patients with (A) and without (B) neurological deficits. 
Data is presented as n (%). (C): comparison of affected brain networks between traditional and non-traditional areas. We found a statistically significant 
difference in patients without neurologic deficits (P = .014), with a higher amount of affected networks related to non-traditional eloquent areas. That 
finding was not present in the cohort of patients with neurologic deficits (P = .868). SM, sensorimotor; VAN, ventral attention network; CEN, central exec-
utive network; DMN, default mode network; DAN, dorsal attention network. Data is presented as percentage of networks affected, at-risk or unaffected.
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The Dorsal Attention Network (DAN) presented a similar 
damage prevalence compared to the DMN affected in 32% of 
the patients and at-risk in 23% of them. The former is a bilat-
eral network that is responsible for the voluntary orientation 
of attention and externally-directed cognition, while the DMN 
sub-serves internal cognition and is most active during task-
negative processes as resting states or mind-wandering. 
Surprisingly, these two networks present apparent antago-
nistic features, and they are “modulated” by the previously 
mentioned CEN and the Salience network. In our study, the 
salience network was affected in 25% of patients.

The last evaluated network was the limbic system. This 
network includes structures as the hippocampus, amyg-
dala, posterior cingulate gyrus, temporal pole, medial and 
lateral orbitofrontal cortex and the parahypocampal gyrus. 
It was affected in 28% of the patients, and it’s dysfunction 
has been associated with socio-emotional behavior prob-
lems or memory loss.38

Networks and Neurologic Deficits

In our study, more than half of the cohort presented with 
neurologic deficits. As neuropsychological testing was not 
considered for this study, we only included deficits evident 
in a complete neurological physical examination. Patients 
with neurologic deficits had a significantly higher number 
of networks affected (3.42 vs 2.19 networks, P < .001), as 
may be expected. However, one of the major findings is 
that those patients who presented “neurologically intact”, 
had an average of 2.19 large-scale networks with evident 
alterations. Historically, the term neurologic deficit in neu-
rosurgery has been associated with the concept of focal 
neurologic deficit, defined as “a set of symptoms or signs 

in which causation can be localized to an anatomic site 
in the central nervous system”.47 When a neurologic func-
tion is altered, but the cause cannot be localized to a spe-
cific anatomic site, we generally use the term non-focal 
neurologic deficit (i.e. altered mental status, confusion).48 
In this context, one of the first thoughts that comes into 
our minds is that the new advances in neuroscience (in-
cluding connectomics) challenge the historic definition 
of focal neurological deficits. As it has been published, a 
more accurate and contemporary onco-functional balance 
should be pursued by acknowledging higher cognitive 
functions in the management of brain tumors. Although 
more studies are needed to compare the accuracy and reli-
ability of the Quicktome platform to current intra-operative 
mapping techniques, we expect that machine-learning 
techniques may provide a seamless method to incorporate 
highly efficient network analysis at the patient’s bedside.

Limitations

Our study has several limitations that needs to be dis-
cussed. The first is its retrospective design, which makes 
the study susceptible to a patient selection bias. We tried 
to mitigate that bias by including one-hundred consecutive 
patients that met the inclusion criteria in a high-volume 
brain tumor practice. Secondly, a standardized preoper-
ative neuropsychological assessment was not used, lim-
iting the accuracy of the neurological examination. Albeit 
many neuropsychological domains have been described 
thoroughly in the literature, the complexity of the involved 
neural circuits and peri-operative assessments remain a 
challenge in neuro-oncology, and are not routinely evalu-
ated in many centers.29,49 Third, qualitative assessment can 

  
Table 2. Brain network analysis in the total cohort (n = 100)

Brain network Affected At-risk Unaffected Total 

Traditional eloquent areas

 Visual 15 19 66 100

 SM 30 19 51 100

 Language 23 19 58 100

 VAN 21 12 67 100

Non-traditional eloquent areas

 Limbic 28 14 58 100

 CEN 49 21 30 100

 DMN 43 19 38 100

 DAN 32 23 45 100

 Salience 25 17 58 100

Statistical analysis  
Mean (SD)  
[Median, IQR]

 All patients 2.66 (1.81) [3,3] 1.44 (1.26) [1,2] 4.90 (1.84) [5,2.75)  

 Without neurological deficits 2.19 (1.76) [2,2] 1.51 (1.36) [1,1.25] 5.29 (1.81) [5,2.25)  

 With neurologic deficits 3.42 (1.63) [3,2] 1.31 (0.96) [1,1.25] 4.26 (1.73) [4,2)  

SM, sensorimotor; VAN, ventral attention network; CEN, central executive network; DMN, default mode network; DAN, dorsal attention network; SD, 
standard deviation; IQR, interquartile range.
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be subjective and difficult to validate in similar studies. We 
tried to mitigate this limitation by including two board-cer-
tified neurosurgeons who completed all assessments and 
were blinded to each other and the history of the patients. 
Currently, there are no available FDA-approved software 
tools that are able to analyze brain networks and retrieve 
metrics on damage to cortical or sub-cortical structures. 
Hopefully, as machine learning techniques grow in neu-
rosurgery, we will count with more robust quantitative 
analysis in the near future. Forth, there are likely inherent 
differences between infiltrating primary brain tumors and 
metastases on network integrity. This limits the interpre-
tation of our findings, and we expect to see studies per-
formed on specific tumor types in the near future.

Future Directions

A better understanding of the human connectome and its 
peri-operative adaptations carries important implications 

in the management of brain tumors. Accessible brain net-
work analysis at the bedside enhances the concept of pre-
cise, minimally invasive surgery. Moreover, it can generate 
data beyond the narrow setting of clinical trials, leveraging 
machine-learning models. We expect that the empirically 
validated concept of eloquence will be reappraised in-
cluding new perspectives such as hubness,26 PageRank 
centrality50 and/or meta-networks.25 The future applica-
tions of these concepts extend beyond the field of neuro-
oncology, including vascular, degenerative, and traumatic 
pathologies, as well as neuro-rehabilitation.

Conclusions

Large-scale brain networks are frequently affected in pa-
tients with brain tumors, even when presenting without ev-
ident neurologic deficits. In our series, the most commonly 
affected brain networks were related to non-traditional 

  

Visual

DAN Language

Van

SM

Salience
DMN Limbic

CEN

Figure 3. Example of patient with a left temporal glioblastoma who underwent large-scale network analysis using the Quicktome platform. 
Language, visual and sensorimotor networks are frequently considered in patients with tumors located in the dominant temporal lobe, but we can 
see in the images that additional networks may be damaged or at-risk in this case (CEN, Limbic, DMN, Salience, DAN). Visualization of the networks 
is represented on the same axial cut for comparison purposes, but the assessment was done inspecting each parcellation and white matter tract 
in the three-dimensional space. SM, sensorimotor; VAN, ventral attention network; CEN, central executive network; DMN, default mode network; 
DAN, dorsal attention network. White matter tracts are represented as multicolored lines, and cortical parcellations are visualized as groups of 
dots with the same color.
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eloquent areas. Although further studies are needed com-
paring novel machine-learning platforms to gold-standard 
brain mapping techniques, integrating them into the clin-
ical setting can help us elucidate how to preserve higher-
order cognitive functions associated with these networks.

Supplementary material

Supplementary material is available at Neuro-Oncology 
Advances online.
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brain network | eloquent areas | machine-learning | 
neuro-oncology.
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