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A B S T R A C T   

Background: Despite efforts to improve targeting accuracy of the dorsolateral prefrontal cortex (DLPFC) as a 
repetitive transcranial magnetic stimulation (rTMS) target for Major Depressive Disorder (MDD), the heteroge
neity in clinical response remains unexplained. 
Objective: We sought to compare the patterns of functional connectivity from the DLPFC treatment site in patients 
with MDD who were TMS responders to those who were TMS non-responders. 
Methods: Baseline anatomical T1 magnetic resonance imaging (MRI), resting-state functional MRI, and diffusion 
weighted imaging scans were obtained from 37 participants before they underwent a course of rTMS to left 
Brodmann area 46. A novel machine learning method was utilized to identify brain regions associated with each 
item of the Beck's Depression Inventory II (BDI-II), and for 26 participants who underwent rTMS treatment over 
the left Brodmann area 46, identify regions differentiating rTMS responders and non-responders. 
Results: Nine parcels of the Human Connectome Project Multimodal Parcellation Atlas matched to at least three 
items of the Beck's Depression Inventory II (BDI-II) as predictors of response to rTMS, with many in the temporal, 
parietal and cingulate cortices. Additionally, pre-treatment mapping for 17 items of the BDI-II demonstrated 
significant variability in symptom to parcel mapping. When parcels associated with symptom presence and 
symptom resolution were compared, 15 parcels were uniquely associated with resolution (potential targets), and 
12 parcels were associated with both symptom presence and resolution (blockers or biomarkers). 
Conclusions: Machine learning approaches show promise for the development of pathoanatomical diagnosis and 
treatment algorithms for MDD. Prospective studies are required to facilitate clinical translation.   

1. Introduction 

Repetitive transcranial magnetic stimulation (rTMS) is recognized as 
an effective intervention for patients with major depressive disorder 
(MDD), particularly for patients resistant to first-line treatments (Amad 
and Fovet, 2022). While a substantial body of evidence supports the 
superiority of rTMS treatment applied to the left dorsolateral prefrontal 
cortex (DLPFC) compared to sham treatment, only 30–60 % of patients 
with treatment resistant MDD show a clinically meaningful response, 
with an estimated 10–60 % reduction in overall symptom burden (Ma 

et al., 2010). Currently, it remains unclear which individual factors 
contribute to the heterogeneity in clinical response (Beuzon et al., 2017; 
Hasanzadeh et al., 2019; Kaster et al., 2019), making it difficult to 
predict clinical outcomes and identify potential candidates. 

While rTMS is a useful tool for difficult patient populations, several 
interconnected ideas about how to improve the success rate have been 
proposed. In addition to improving the selection of stimulation param
eters (Gellersen and Kedzior, 2019; Risio et al., 2020), improving the 
targeting accuracy of the stimulation (e.g., more accurately targeting the 
DLPFC) appears to be a highly promising approach (Cash et al., 2021; 
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Fitzgerald, 2021). Several studies have demonstrated that the use of 
image-based guidance to improve accuracy does have the potential to 
provide beneficial clinical outcomes when compared to guidance based 
on craniometric measurements (i.e. the “5-cm rule”) (Cash et al., 2021; 
Fitzgerald et al., 2009). Furthermore, even when using image-based 
guidance to visually ensure the stimulation target is located within the 
DLPFC, a more granular approach to targeting the correct portion of the 
DLPFC might be necessary. Previous studies have demonstrated that 
rTMS induces changes in functional connectivity (Corlier et al., 2019), 
and functional connectivity may be used to predict rTMS outcome. The 
Human Connectome project (Glasser et al., 2016), and others (Cieslik 
et al., 2013; Muhle-Karbe et al., 2016), have noted that the DLPFC is 
made up of dozens of unique subregions, or parcels, each of which are 
components of different large scale brain networks, wherein their con
nectome classification may differ from their immediate neighboring 
subregion within the DLPFC (Yeo et al., 2011). An increased degree of 
granularity in targeting may also be necessary for optimal clinical re
sults, as targeting a portion of the DLPFC outside of Brodmann's area 46 
seems to lessen efficacy as a depression treatment (Rosen et al., 2021). 

Accurate target selection may also require a personalized approach 
based on both symptomatology and functional connectivity. If this is the 
case, it may underlie the observed heterogeneity in clinical outcomes 
(Siddiqi et al., 2019). This study used a novel machine learning method, 
the Hollow-tree Super (HoTS) method, to address two hypotheses. 
Following the identification of the exact location of the stimulation on 
the parcellated brain, we first expected that patients with MDD who 
were TMS responders would show distinct patterns of functional con
nectivity compared to TMS non-responders. Second, we mapped the 
different symptom profiles within all patients (responders and non- 
responders to rTMS) to different patterns of pretreatment functional 
connectivity. This approach aimed to determine which regions outside 
the left DLPFC might explain the symptom heterogeneity seen in these 
patients, and their responses to the intervention (Blom et al., 2014; 
Dalgleish et al., 2020; Drysdale et al., 2017), which might present novel 
targets for stimulation. Together, we believe these data will provide 
insight into the role of functional connectivity-based analysis in 
improved response prediction, novel target selection, and possibly direct 
symptom specific target selection. 

2. Methods and materials 

2.1. Patient cohort 

37 participants with a diagnosis of MDD underwent T1 and T2 
magnetic resonance imaging (MRI), resting-state functional MRI 
(rsfMRI), and diffusion weighted imaging (DWI) (Table 1). These par
ticipants were part of a larger clinical study (Australian and New Zea
land Clinical Trials Registry: Investigating Predictors of Response to 
Transcranial Magnetic Stimulation for the Treatment of Depression; 
ACTRN12610001071011; https://www.anzctr.org.au/Trial/Registrati 
on/TrialReview.aspx?id=336262). Although the original dataset had 
39 participants who underwent rTMS, tractography could not be 
reconstructed in two participants. Depression symptom severity was 
assessed using the Hamilton Depression Rating Scale (HAM-D), the 
Montogomery-Asberg Depression Rating Scale (MADRS), and Beck's 
Depression Inventory (BDI-II). 

2.2. rTMS protocol 

After depression severity assessment, individuals initially completed 
3 weeks of rTMS to the left DLPFC (10 Hz, daily Monday through Friday) 
(Bailey et al., 2018), targeted using the F3 Beam approach (Beam et al., 
2009). If they do not respond within 3-weeks, they were randomized to 
either continue the same treatment, crossover to 10 Hz rTMS to the right 
DLPFC or sequential bilateral rTMS. Due to the inclusion of the crossover 
condition, our results should be viewed as a test of the association 

between brain regions associated with specific BDI items during rTMS in 
general, rather than a specific rTMS treatment location, as both 1 Hz 
rTMS to the right DLPFC and sequential bilateral rTMS have demon
strated efficacy (Cao et al., 2018; Fitzgerald et al., 2006). Response 
criteria followed through from a previous study (Australian and New 
Zealand Clinical Trials Registry: Investigating Predictors of Response to 
Transcranial Magnetic Stimulation for the Treatment of Depression; 
ACTRN12610001071011; https://www.anzctr.org.au/Trial/Registrati 
on/TrialReview.aspx?id=336262), where response was defined as a 
50 % reduction on the Hamilton Depression Rating Scale (HAM-D). 
However, in the present study, for the purpose of integrating the data 
into our ML method, response to treatment was defined by creating a 
reliable change index (RCI) per subject to categorize into responders vs. 
non-responders based on their scores on the BDI-II. Simulation co
ordinates were reconstructed using combined T1 and T2 scans and 
converted from native to standard space using. 

FSL Version 5.0.10 software (Jenkinson et al., 2012) and customized 
MATLAB R2017a scripts (The Math-Works, Inc., Natick, MA). As per the 
methodology of our previous rTMS-specific study, assessment with the 
BDI-II, MADRS and HAM-D was repeated following treatment at 3 weeks 
from baseline, and then at 6 weeks from baseline. However, for the 
purpose of our present study, analysis was only done with the BDI-II 
items, to allow for mapping of symptomatology to brain regions. 
Furthermore, as mentioned previously, a RCI was used to categorize 
participants into responders vs non-responders. While analysis on 
baseline BDI-II items was performed on the entire dataset of 37 partic
ipants, analysis on brain regions associated with symptom resolution 
following rTMS was only carried out on participants if their target site 
was validated to be left BA46, as defined by the Human Connectome 
Project Multimodal Parcellation (HCP-MMP1) atlas (Glasser et al., 
2016). This manifested in a subgroup of 26 participants. 

2.3. Imaging protocol 

All patients underwent diffusion tractography images with the 

Table 1 
Subject demographics.  

N 37 

Age (mean ± SD) 42.9 ± 12.8 
Sex (M/F) 21/16 
Age of onset (mean ± SD) 25.7 ± 11.0 
Length of illness (mean ± SD) 19.4 ± 11.6 
MADRSa (mean ± SD)  

Baseline 33.2 ± 6.7 
Week 3 29.0 ± 8.9 
Week 6 25.2 ± 10.8 

rTMS respondersb (%) 27.0 
BDIc (mean ± SD)  

Baseline 34.0 ± 9.2 
Week 3 28.0 ± 11.1 
Week 6 23.8 ± 12.8 

Medicationsd  

Antidepressants, n  
SSRI 8 
SNRI 5 
Other 13 

Benzodiazepines, n 14 
Antipsychotics, n 14 
Mood stabilizers, n 4  

a Montgomery-Asberg Depression Rating Scale, range of possible 
scores 0 to 60. 

b Clinical response defined as 50 % reduction in total MADRS 
score. This was not the criterion used for analysis. 

c Beck's Depression Inventory, range of possible scores 0 to 63. 
d 12 patients were taking >1 medication from a single class. 15 

patients were taking a combination of treatments (i.e. one or more 
medications from at least two of the antidepressant, benzodiazepine, 
antipsychotic, or mood stabilizer categories). 
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following parameters: Siemens Magnetom Trio 3 T MRI scanner, with 10 
b = 0 baseline image and a b = 1000 shell with 60 direction acquisition 
and 2 mm isotropic voxels. 

We also acquired a resting-state fMRI with the following parameters: 
3.5 × 3.5 × 3.3 mm voxels, TR = 2000 ms, TE = 25 ms, 200 volumes/ 
run. 

2.4. Diffusion tractography preprocessing steps 

The diffusion weighted imaging (DWI) was processed using the 
Omniscient software, which employs standard processing steps in the 
Python language. The processing pipeline includes the following steps: 
1) the diffusion image is resliced to ensure isotropic voxels, 2) motion 
correction is performed using a rigid body registration algorithm to a 
baseline scan, 2) slices with excess movement (defined as DVARS>2 
sigma from the mean slice) are eliminated, 3) the T1 image is skull 
stripped using the HD-BET software (25), which is inverted and aligned 
to the DT image using a rigid alignment, and this aligned T1 image is 
then used as a mask to skull strip the aligned DT image, 4) gradient 
distortion correction is performed by applying a diffeomorphic warping 
registration method between the DT and T1 images, 5) The fiber 
response function is estimated and the diffusion tensors are calculated 
using constrained spherical deconvolution, 7) deterministic tractog
raphy is performed with uniform random seeding, 4 seeds per voxel, 
usually creating about 300,000 streamlines per brain. 

2.5. Creation of a personalized brain atlas using machine learning based 
parcellation 

In order to minimize the effects of gyral variation, a machine 
learning based, subject specific version of the HCP-MM1 atlas was 
generated using each subject's structural connectivity by warping the 
HCP atlas onto each individual's brain based on structural connectivity, 
based on the methodology recently described by our group (Doyen et al., 
2022). This method created a version of the HCP-MMP1 atlas with 181 
cortical parcels along with 8 subcortical structures per hemisphere, 
along with the brainstem as one parcel. 

2.6. rsfMRI preprocessing steps 

The rsfMRI images were processed using standard processing steps. 
1) motion correction on the T1 and BOLD images was performed using a 
rigid body alignment; 2) slices with excess movement (defined as 
DVARS>2 sigma from the mean slice) were eliminated; 3) skull strip
ping was performed on the T1 image using a convolutional neural net 
(CNN), which was inverted and aligned to the resting state bold image 
using a rigid alignment, and used as a mask to skull strip the rsfMRI 
image; 4) slice timing was corrected; 5) Global intensity normalization 
was performed; 6) gradient distortion was corrected using a diffeo
morphic warping method to register the rsfMRI and T1 images; 7) High 
variance confounds were calculated using the CompCor method (Beh
zadi et al., 2007). These confounds as well as motion confounds were 
regressed out of the rsfMRI image, and the linear and quadratic signals 
were detrended. Note, this method does not perform global signal 
regression; 8) spatial smoothing was performed using a 4 mm FWHM 
Gaussian kernel. The personalized atlas created in previous steps was 
registered to the T1 image, and grey matter atlas regions were aligned 
with the grey matter regions in each participant's scans. Thus, the 
personalized atlas was ideally positioned for extracting a BOLD time 
series, averaged over all voxels within a region, from all 379 regions. 
The Pearson correlation coefficient was calculated between the BOLD 
signals of each unique area pair (self to self-inclusive), which yielded 
143,641 correlations. 

2.7. Mapping of symptoms to brain regions using the Hollow-tree Super 
(HoTS) method 

The black box problem in machine learning encompasses the 
inability to gain visibility into the processes performed on inputs of a 
machine learning model to compute the output. This limits the potential 
for the results of machine learning research to transition into clinical 
practice, because for results to provide meaningful insights into rTMS 
targeting in clinical practice there is a need to know which part of the 
brain is generating a problem, and as such could be targeted for symp
tom improvement. For this reason, we used a boosted trees approach, 
called Hollow-tree Super (HoTS) (Doyen et al., 2021) which is a useful 
computational tool for making inferences on datasets. In this case, we 
used it specifically to obtain information about which features the model 
was using for its outputs. These features provided insight into which 
brain regions showed functional connectivity which was linked to the 
symptom or its treatment response. 

In this study, the HoTS method was used to find the regions with 
connectivity values that most contributed to exploring: 1) pre-treatment 
presence or absence of a BDI-II item, with presence defined as a response 
score equal to or >2 for each questionnaire item, 2) overall response to 
rTMS at left area 46, with resolution defined as having the symptom 
present pre-treatment, and not present post-treatment, at 6 weeks from 
baseline. Cut-offs for symptom presence and improvement for the ma
chine learning analyses were defined as a 50 % reduction in score on the 
BDI-II item measure. A score >2 indicated more severe symptoms and 
was clearly differentiable from participants for whom the BDI-II item did 
not apply. Similarly, we opted to use BDI-II scores as the models were 
able to achieve a relatively high area under the curve (AUC) for the 
presence and improvement of almost all BDI-II items. Only cases with an 
AUC above 0.7 were included in the final results. Identified parcels were 
mapped to known resting-state networks of the Yeo-Buckner atlas (Akiki 
and Abdallah, 2019; Yeo et al., 2011): the Default Mode Network 
(DMN), the Central Executive Network (CEN; also referred to as the 
Frontoparietal Network), the Dorsal Attention Network (DAN), Salience 
Network (SN), Sensorimotor Network (SMN), Limbic Network (LN), and 
Visual Network (VN). 

2.8. The parcel level consistency of image guided targeting 

We performed structural connectivity based atlasing to utilize the 
diffusion tractography imaging, allowing the adjustment of boundaries 
of the HCP-MMP1 atlas to fit each patient's structural connectivity. 
Using the stored coordinates of the treatment site performed for each 
patient, we then compared the parcel treated and found that left area 46 
was the target at the center of the field in 67 % of cases (n = 26; Fig. 1). 
The other stimulation sites were located in neighboring parcels: specif
ically left a9-46v, left p9-46v, left 9-46d, left 9a, and left 9p. While these 
are minor differences in spatial location, these differences mean that in 
two cases, the therapy was centered over a different large scale brain 
network, as left a9-46v and left p9-46v are typically found to be func
tionally part of the central executive network (16, 32). As such, subse
quent analysis on predictors of response to rTMS was performed on the 
cohort of patients who received rTMS to area left 46 (n = 26). Despite 
the small sample size, we were able to produce a model for most items of 
the BDI-II with a high AUC. Furthermore, this small sample was 
permissible in the context of creating a model as it was focused only on 
the sample of 26, rather than creating an extrapolation tool for pre
dicting population responses to TMS treatment. To prevent over-fitting, 
a common by-product of training a model on a small sample size, we 
used 5-fold cross-validation to reduce the impact of this on its ability to 
make inferences on the sample it was trained on. 
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3. Results 

3.1. Predictors of response to left BA46 rTMS 

Within the group of patients who received treatment stimulation to 
left BA46 (n = 26), the HoTS method was used to identify baseline 
functional connectivity features associated with the resolution of 
symptoms following rTMS, defined as complete absence of symptoms 
post-treatment (a BDI-II score of 0 for that specific BDI-II item). This 
included patients who participated in the crossover condition. Models 
for 19 BDI-II items met the AUC threshold of 0.7 (Fig. 2a). Across the 
models for each symptom, the method identified 169 parcels that pre
dicted BDI-II item resolution following rTMS. The full list of predictors, 
along with log odds predicted by the model can be found in Supple
mentary Table 1 and Supplementary Figs. 1–21. 

The functional connectivity features of the 169 parcels were used by 
the machine learning models to predict resolution of BDI-II items. These 
represented 127 distinct parcels which were used in at least one model 
to predict resolution of at least one item of the BDI-II, as 29 parcels were 
apparent in >1 model. The resolution of a given item could result in the 
model demonstrating an increased correlation of a specific parcel with 
other regions, decreased correlation with other regions, or a mixture of 
both. While connectivity features of 98 parcels were associated with 
resolution of a single BDI-II item, 29 parcels were associated with res
olution of at least two BDI-II items (Fig. 2b). Out of the total 127 parcels 
associated with BDI-II item resolution, 30 parcels were affiliated to the 
DMN, 24 to the SMN, 22 to the VN, 17 to the CEN, 11 to the DAN, 11 to 
the SN, 5 to the LN, and 7 parcels were subcortical structures (Fig. 2c). 
We next decided to focus only on parcels associated with resolution at 
least three BDI-II items to increase the sensitivity of the association 
between symptom resolution and network connectivity. Nine parcels 
were associated with resolution of three or more items of the Beck's 
Depression Inventory (Fig. 2d). Out of these nine parcels, four were 
associated with the DMN (left 31 pv, left STSda, right v23ab, right 
STGa), two with the SMN (left 1, left 3b), one with the VN (right TPOJ3), 
one with the DAN (left PFt), and one was a subcortical structure (right 
Thalamus). 

3.2. Symptom to parcel mapping 

We next performed HoTS based analysis on rsfMRI acquired prior to 
treatment against baseline items of the BDI-II to obtain a symptom-based 
parcel map, where having a symptom was defined as a score equal to or 

>2 on each item. This was performed on the entire cohort of 37 par
ticipants. Models for 16 symptoms met the AUC threshold of 0.7 
(Fig. 3a). Similar to the model constructed from the associations be
tween symptom resolution and baseline connectivity, most parcels were 
matched to a single BDI-II item, and 27 were matched to at least two 
items (Fig. 3b). There was however significant heterogeneity in network 
affiliations of parcels associated with each symptom and we were unable 
to discern clear clusters (Fig. 3c). We then focused on parcels associated 
with at least two BDI-II items in order to identify key parcels which may 
provide further targets for rTMS. Of these 27 parcels, 6 were affiliated 
with the DMN, 6 with the CEN, 4 with the SMN, 3 with the VN, 3 with 
the DAN, 1 with the SN, and 4 parcels were subcortical structures 
(Fig. 3d). The full results of the parcel to symptom map, along with log 
odds predicted by the model can be found in Supplementary Table 2 and 
Supplementary Figs. 1–21. 

3.3. Predictors of both symptom presence and TMS response reveal 
additional therapeutic markers 

Finally, to understand the role of response predictors identified by 
the machine learning model, we examined the overlaps between pre
dictors of response and predictors of symptom presence (Fig. 4a). In 
order to identify pertinent patterns, we examined the set of 27 parcels 
explaining response to two or more BDI-II items. 15 out of 27 parcels 
were only associated with symptom resolution (Fig. 4b). Among these, 
six were associated with the DMN (left 47 m, left A5, left 9p, left 31 pv, 
right STGa, right v23ab), three with the SMN (left 2, left A5, right 24dv), 
two with the VN (right TPOJ3, left IP0), two with the DAN (right TE2p, 
left PFt), one with the CEN (left IFSa), one with the SN (left 46) and one 
was a subcortical structure (right Accumbens). The rest of the 14 parcels 
were predictors of both symptom resolution and symptom presence at 
baseline (Fig. 4a). Four of these were affiliated with the DMN (right 47 
m, right d23ab, right 8Ad, left STSda), three with SMN (right 6mp, left 
3b, left 1), two with VN (right LO2, left FST), two with CEN (left RSC, 
right 7Pm), two with SN (left FOP1, right PBelt), and one was a 
subcortical structure (right Thalamus). Next, we further examined par
cels that predicted both the presence of a symptom and resolution of the 
same symptom (Fig. 4c). Six BDI-II items had the same predictor for 
presence and resolution, mapping to ten parcels (Fig. 4c-d). 

4. Discussion 

Given the 30–60 % response rates to rTMS to the left DLPFC, it is 

Fig. 1. The stored coordinates from Transcranial Magnetic Stimulation treatments of the left dorsolateral prefrontal cortex (average pictured in blue) was compared 
to left area 46 (red) which was the target at the centre of the field in 67 % of cases. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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worth addressing the notable possibility that we lack adequate methods 
for identifying appropriate stimulation target candidates. Data driven 
approaches to both response prediction for rTMS treatment and treat
ment parameters could improve identification of patients who should be 
treated using rTMS and enhance treatment efficacy through optimal 
rTMS targeting. It is possible that different symptoms in MDD might be 
associated with different functional connectivity abnormalities in 
different neural circuits, and thus different rTMS targets might result in 
improvement in different symptoms, via changes in connectivity of 
different large-scale networks. We demonstrate the presence of multiple 
symptom predictors: anatomical regions associated with the presence of 
multiple symptoms, regions associated with resolution of these symp
toms, and in some cases, regions associated with both the symptoms and 
prediction of resolution of that symptom. We propose that these regions 
may serve as potential secondary targets for rTMS treatment, or as 
markers of rTMS response. Ultimately, machine learning approaches 
show promise for pathoanatomy-based diagnosis and treatment of 
mental illnesses like MDD. 

The optimal target for rTMS treatment of major depression remains 

unclear. Studies relying on the 5 cm method have been shown to target 
inconsistent clusters within the DLPFC (Fitzgerald, 2021; Li et al., 2017). 
In contrast, a more recent approach relied on functional connectivity to 
identify the subregion in the DLPFC that is most anti-correlated with the 
subgenual anterior cingulate cortex (SGC) (Cash et al., 2019; Fox et al., 
2012; Weigand et al., 2018). Targeting that is closer to the target rec
ommended by this method is strongly correlated with treatment 
response, though prospective randomized data is lacking. Nonetheless, 
the treatment site identified through this method was more anterior and 
lateral when compared to those identified using the 5 cm method, which 
may partly explain the improved treatment response from targeting that 
more closely approximates the site recommended by this method. 
Alternatively, stimulation at two separate targets within the DLPFC may 
address two separate clusters of symptoms. Anterolateral stimulation 
has been shown to be best for dysphoric symptoms, while posteromedial 
stimulation improved anxiosomatic symptoms (Siddiqi et al., 2019). 
This separation in the association between treatment site and specific 
symptom sub-type response is not especially surprising given that the 
boundaries of large-scale brain networks are often sharp and adjacent 

Fig. 2. Baseline resting-state fMRI parcels predict response to repetitive Transcranial Magnetic Stimulation treatment. (a) When a complete absence of symptoms 
post-treatment was defined as response to treatment, 19 items of the Beck's Depression Inventory surpassed the AUC threshold of 0.7. (b) Further analysis 
demonstrated the number of parcels that were associated to each symptom the Beck's Depression Inventory measured. The graph depicts the number of parcels that 
are associated with one, two, three or more symptoms. It demonstrates there are 9 parcels that were matched to at least three symptoms, which identifies the parcels 
with the most pertinent patterns. (c) A graphical representation of the network affiliation of each parcel that is associated with a symptom on the Beck's Depression 
Inventory. The graph plots 169 parcels, rather than 127, as it includes the duplicates of the 29 parcels which matched to multiple symptoms. Some symptoms had a 
larger representation of networks compared to others. (d) A symptom to parcel map of the nine parcels associated with resolution of at least three symptoms, along 
with their anatomical location on T1-weighted magnetic resonance imaging. The colors of the arrows represent their network affiliations. DMN, Default Mode 
Network; SM, Sensorimotor Network; blue, DAN, Dorsal Attention Network; CEN, Central Executive Network. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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parcels can be part of different brain networks from their immediate 
neighbor parcels (Akiki and Abdallah, 2019). While we did not test the 
effect of different stimulation sites, our analysis also points to the po
tential of secondary rTMS targets and possible differing associations 
with symptom reductions from treating those targets. Taken together, 
this indicates that drawing distinctions between parcels as targets is 
likely to be a meaningful approach for response to rTMS. 

The heterogeneity of depression symptoms and rTMS responses may 
manifest from issues arising from within distinct brain regions and 
networks, which may require individualized targeting. Functional con
nectivity with other regions, including the hippocampus, amygdala, 
striatum and the thalamus, have also been associated with rTMS treat
ment response (Corlier et al., 2019; Eshel et al., 2020; Taylor et al., 
2018). One previous study has identified four subtypes of depression 
based on clinical characteristics and functional connectivity, further 
demonstrating a difference in response to rTMS between the biotypes 
(Drysdale et al., 2017). When comparing their list of areas which 
differentiated responders and non-responders to ours, there were some 
similarities including the posterior cingulate cortex, postcentral gyrus, 
and thalamus, though different parcellation schemes were utilized. A 

replication of this study however failed to find statistical significance 
within the correlation between functional connectivity and clinical 
symptoms, and methods of clustering, with the authors recommending 
feature reduction to achieve more stable machine learning models 
(Dinga et al., 2019). We suggest based on our machine learning method, 
however, that there may be a greater number of depression subtypes, 
reflecting the complexity of the disease and the need to move beyond 
reductionist approaches to simplify diagnosis and treatment. This may 
in turn allow for better characterization of a patient's condition, the 
optimal target location, and a more accurate prediction of the treatment 
response. It may, however, be challenging to design an adequately 
powered prospective study to determine whether individualized tar
geting would manifest in improved treatment response compared to 
standard treatment, and alternative study designs may be necessary. 

An interesting question for the use of machine learning models 
applied to functional connectivity data with the aim of evaluating 
response to rTMS at a specific target is: What is the meaning of the 
functional connectivity features that the machine learning uses to 
evaluate response? One potential interpretation is that predictive con
nectivity features comprise a list of possible anomalies, one or more of 

Fig. 3. Results from a HoTS-based analysis on resting-state fMRI data acquired prior to treatment against baseline symptoms of the Beck's Depression inventory, to 
obtain symptom-based parcel maps, where having a symptom was defined as a score greater than or equal to 2 on each item. (a) 17 items of the Beck's Depression 
Inventory surpassed the AUC threshold of 0.7 as predictors of presence of a symptom. (b) The number of parcels that were associated with each symptom are 
displayed, wherein 27 parcels matched to at least two symptoms. (c) A graphical representation of the network affiliation, based on known Yeo-Buckner networks, of 
each parcel that is associated with a symptom on the Beck's Depression Inventory. While the Default Mode Network was the most common network, clear clusters 
could not be defined. (d) Symptom to parcel map of the 27 parcels that matched to at least two symptoms. The parcels have been placed in relative anatomical 
positions, while the colors of the arrows represent the networks associated with the parcels. DMN, Default Mode Network; SM, Sensorimotor Network; blue, DAN, 
Dorsal Attention Network; CEN, Central Executive Network. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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which may represent features of a distinct disease, not focused on the left 
BA46 or the salience network normally associated with depression, and 
which could be considered as additional or alternate targets in a non- 
traditional rTMS therapy. In our analysis, these potential additional/ 
alternative targets may consist of the parcels which were only associated 
with symptom resolution. Alternately, the machine learning models 
might be pointing out connectivity problems which might prevent the 
normalization of circuits with left DLPFC rTMS intervention – ‘blockers’ 
of treatment response to rTMS to area 46 which might need additional 
treatment or may make rTMS success unlikely. These parcels in our 
model may be those which were associated with both the presence and 
resolution of BDI-II items.. These parcels may alternatively point to 

features of the connectome which could predict treatment response to 
rTMS to left BA46, as well as physiological differences between TMS 
responders and non-responders. Given our relatively small sample size 
and examination of solely the baseline functional connectivity prior to 
treatment, a different interpretation of the role of these multiple 
symptom predictors is possible. Particularly, not knowing whether a 
region is overactive or underactive halts these hypotheses at a stage of 
speculation. While additional prospective data are necessary to confirm 
and substantiate the significance of our analysis, it seems likely that 
these kinds of questions are useful avenues for future inquiry. 

The current study has inherent limitations. The small sample size 
limits the external validity of the findings and the confidence with which 

Fig. 4. The crossover of predictors of both symptom presence and response to treatment. The parcels that are associated with both may provide further targets for 
repetitive Transcranial Magnetic Stimulation. a) The parcels predicting resolution of at least two Beck's Depression Inventory items have been mapped in a Venn 
diagram. The parcels enclosed only by the blue box signify parcels which are only associated with symptom resolution, whereas parcels at the intersection of the blue 
and orange boxes are associated with at least two-fold symptom resolution but are also associated with presence of at least one symptom at baseline. b) The plot 
shows whether any parcels are associated with both presence and resolution of BDI-II items. The tiles in blue represent parcels which are associated with the presence 
and resolution of the same BDI-II item. C) The aforementioned blue tiles, parcels associated with the presence and resolution of the same BDI-II item have been 
mapped, showing their associated symptom, and anatomical location on T1-weighted magnetic resonance imaging. Six parcels are right sided, while four are left 
sided. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

H. Taylor et al.                                                                                                                                                                                                                                  



Journal of Affective Disorders 329 (2023) 539–547

546

the identified relationships can be applied clinically. Specifically, 
similar machine learning approaches typically require hundreds or 
thousands of data points to avoid over-fitting, however this is typically 
for models aimed at predicting beyond the limits of the data it is 
analyzing. It is important to note that the present study used machine 
learning to explore a novel relationship, which it is hoped will 
encourage future large-scale studies to consider utilizing similar ap
proaches. Furthermore, we applied methods to protect against false 
conclusions from results produced by over-fitting our models within a 
small sample. This included the use of 5-fold cross validation, which 
controls for over-fitting within the model through the training of mul
tiple models on different subsets of the data, then validating the per
formance of those trained models on several subsets of the already 
available data, and assessing the classification accuracy across the held- 
out data. Subsequently, because the classifiers across the 5-fold cross 
validations were still accurate, this lessens the likelihood that over- 
fitting of the model led to erroneous conclusions and predictions. 

Additionally, the 3-week duration of rTMS treatment may also have 
been insufficient for all participants to show improvement, especially 
considering our approach which binarized the definition of symptom 
improvement as complete resolution to attain balanced class sizes given 
our small sample size. Some participants who were defined as non- 
responders may therefore not have been non-responders if longer 
treatment length had been applied, and the model instead may have 
identified features of the connectome associated with patients who are 
early responders to rTMS. These patients may however still be those who 
benefit the most from rTMS (37). The variation in rTMS protocol for 
patients (10 Hz on left DLPFC, 1 Hz on right DLPFC, or bilateral 
sequential) is a limitation, as a lack of stimulation to the same brain 
region for all participants for the whole treatment course reduces 
experimental consistency. Finally, the reproducibility and clinical utility 
of our machine learning model has not yet been evaluated. Our analysis 
also did not consider other possible confounds, including the role of 
pharmacotherapy. Prospective studies should examine these patterns 
with other depression inventories in larger samples and consider sham 
treatment and randomized designs. Nonetheless, machine learning tools 
such as ours have the potential to revolutionize precision medicine. 
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