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Abstract

Purpose Applying graph theory to the human brain has the potential to help prognosticate the impacts of intracerebral
surgery. Eigenvector (EC) and PageRank (PR) centrality are two related, but uniquely different measures of nodal centrality
which may be utilized together to reveal varying neuroanatomical characteristics of the brain connectome.

Methods We obtained diffusion neuroimaging data from a healthy cohort (UCLA consortium for neuropsychiatric phenom-
ics) and applied a personalized parcellation scheme to them. We ranked parcels based on weighted EC and PR, and then
calculated the difference (EP difference) and correlation between the two metrics. We also compared the difference between
the two metrics to the clustering coefficient.

Results While EC and PR were consistent for top and bottom ranking parcels, they differed for mid-ranking parcels. Parcels
with a high EC centrality but low PR tended to be in the medial temporal and temporooccipital regions, whereas PR conferred
greater importance to multi-modal association areas in the frontal, parietal and insular cortices. The EP difference showed
a weak correlation with clustering coefficient, though there was significant individual variation.

Conclusions The relationship between PageRank and eigenvector centrality can identify distinct topological characteristics
of the brain connectome such as the presence of unimodal or multimodal association cortices. These results highlight how
different graph theory metrics can be used alone or in combination to reveal unique neuroanatomical features for further
clinical study.
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Introduction

Preserving brain function and maximizing quality of life are
fundamental goals in neurosurgery. Advances in surgical
methods, including intraoperative mapping, awake surgery,
and neurophysiology have helped minimize post-surgical
neurological deficits and improved patient outcomes [1].
These techniques attempt to identify areas of the brain which
are more readily associated with observable functions to
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inform the surgeon of which areas should not be cut to avoid
causing neurologic deficits. Previous attempts to delineate
these regions, collectively referred to as “eloquent” brain
[2], have commonly implemented imaging techniques such
as functional magnetic resonance imaging (fMRI). but have
not been widely adopted in part due to the unavailability of
pipelines for clinical translation [3, 4]. Furthermore, while
identifying regions largely responsible for speech or motor
deficits has been helpful to preserve these functions, the neu-
rosurgical community has maintained a less thorough famili-
arity with the functional deficits which occur with injury
in traditionally “non-eloquent” cerebrum [5]. Ultimately,
our ability to maximize post-operative morbidity has been
largely limited by the lack of complete information on the
brain’s structural-functional architecture [6-8].

More recently, the field of network neuroscience has
emerged as a transdisciplinary effort to improve our insight
into the organizational principles of the brain through
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comparisons with a number of other fields studying the
physics of complex systems. Analyses of the topological
structure of a network have improved our understanding of
information flow through electrical power grids [9], the vul-
nerability of IT communication networks [10], the extent of
collaboration among scientists in academia [1 1], and about
complex biological networks [12]. More recently, through
improvements in big data approaches and in the availability
of large datasets, it has become clear that like many complex
systems, the brain “connectome” involves large-scale neural
networks which are architecturally organized to maximize
the global transfer and integration of information while also
minimizing metabolic cost [13, 14]. In particular, apply-
ing graph theory on the brain’s structural wiring diagram
has provided a possible way to improve our understanding
of structural-functional relationships in the brain beyond a
localizationist view, as the function of a system is intricately
related to the dynamic interactions of many of its structural
elements [15]. According to graph theory, the structural
brain network can be thought of as a series of anatomical
regions, or nodes, linked by pairwise white matter connec-
tions, or edges [16]. Given the importance of spatial hetero-
geneity in human brain organization, anatomical regions can
also be defined according to more anatomically fine, imaging
based parcellation schemes in which individual parcellations
represent the nodes of a graph. Despite how individual nodes
may be defined, the complete set of nodes and edges of a
brain graph comprises the adjacency matrix of the connec-
tome, a model of the topology of the brain.

It is increasingly clear that at least some of the functional
capacity of the brain arises from more complex multinetwork
interactions and global topological characteristics, and there-
fore understanding brain dynamics requires measures which
take into consideration the entire brain connectome and not
just localized brain regions [13]. Through a graph theory
approach, these characteristics can be revealed mathemati-
cally and thus can offer additional information which may
be useful for neurosurgical decision making [17]. Within a
network, highly influential nodes which have structural or
functional significance are referred to as network “hubs”
[18]. Regions more likely to be hubs can be defined based
on various measurements on the network, though central-
ity is the most common. Centrality is the ability of a node
to influence. or be influenced by other nodes as a result of
its connection topology [19]. Two measures which may be
used to identify hub nodes are eigenvector (EC) centrality
and PageRank (PR) centrality [20]. Our group in the past
has shown that PR may be a good indicator of neurosurgical
eloquence [20], with significant interindividual variation to
possibly justify the use of graph theory for each patient’s
surgical planning [7]. While EC and PR are similar measures
of centrality, some important mechanistic differences exist
between them, such as that PR biases against end nodes or
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those nodes which are just connected to just highly con-
nected nodes unlike EC [21]. Thus, it is important to con-
sider the differences in information these metrics reveal
about the topological characteristics of the brain connectome
compared to each other, and if they provide further informa-
tion when used in combination.

Here, we studied a cohort of subjects who have under-
gone diffusion neural imaging and utilized artificial intel-
ligence software to construct a personalized brain atlas and
determined the centrality of each brain region. We sought
to compare Eigenvector and PageRank centrality to derive
improved meaning of these measures when studying the
brain connectome. We aimed to examine what possible
neuroanatomical features are revealed by the differences
between these two metrics and if this difference could pro-
vide a tool for intracerebral neurosurgery worth further clini-
cal investigation. We incorporate our results into a previ-
ously established, fine parcellation scheme by the Human
Connectome Project (HCP) in order to provide an empiric
basis for future study which is anatomically specific.

Methods
Data collection and pre-processing

Magnetic resonance images (MRI) consisting of diffusion
tensor images (DTI) and the T1 anatomical scan of 81
healthy subjects was obtained from the UCLA Consortium
for Neuropsychiatric Phenomics LaSc Study from Open-
Neuro (https://openneuro.org). This cohort was chosen as
it is from a publicly available dataset of healthy control
subjects with the purpose of examining brain function and
anatomy [22]. The DTI were processed using the Omniscient
software [23]. This employs standard processing steps in the
Python language which have been published previously [23]
and are described in brief below and in the Supplementary
Methods (Supplementary Fig. 1).

Creation of a personalized brain atlas using machine
learning-based parcellations

The HCP atlas [24] is based on a machine-learning classi-
fier which parcellates the brain based on multiple modalities
including resting-state fMRI, task functional fMRI, myelin
content, and cortical thickness. The machine learning tool
used by the Glasser scheme is however not currently pub-
licly available and therefore only the group average from the
Glasser study can be used. Global parcellations may how-
ever overlook important individual differences and there-
fore, subject specific application of machine learning tools
is required to increase the accuracy of parcellation.
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To minimize gyral variation across individuals, a machine
learning based, subject specific version of the HCP-MMP1
atlas was generated using each subject’s structural connec-
tivity by warping the HCP atlas onto each individual’s brain
based on structural connectivity, as described by Doyen et al.
[23]. This culminates in 181 cortical parcels and 8 subcor-
tical structures per hemisphere, and the brainstem (as one
parcel).

Calculation of centrality measures

The generated bi-hemispheric weighted adjacency matrices
were used to calculate the graph centrality metrics using
the NetworkX module in Python 3.9. Weighted PageRank
Centrality, Eigenvector Centrality and Clustering Coefficient
were computed for all 379 parcels.

Identified parcels were mapped to core resting-state net-
works based on the 7 Network Yeo-Buckner model [25]:
the central executive network (CEN), default mode network
(DMN), dorsal attention network (DAN), limbic network
(LN), salience network (SN), sensorimotor network (SMN),
and visual network (VN). The Yeo-Buckner model was cho-
sen given its similar anatomical granularity as the Glasser
parcellation scheme which allows for more fine results and
better hypothesis comparison between future studies. Indi-
vidual parcellations were visually mapped into each network
according to anatomical borders and have since been previ-
ously reported by our team [5, 26] and found to demon-
strate similar results to other network models from the HCP
scheme [27].

Analysis of graph metric measures

In order to compare metrics between individuals, raw cen-
trality scores were ranked in descending order for each sub-
ject, such that a smaller numerical rank indicated a higher
nodal centrality. At the group level, the median rank, and
interquartile range of ranks for each parcel was calculated to
compare each metric. Spearman’s correlation was performed
to test for association between median ranks for each metric
at the group level and individual level as these data were not
normally distributed and violated assumptions for Pearson
correlation. The difference between eigenvector and PageR-
ank centrality ranks was plotted against the average of the
two ranks for every parcel across the 81 subjects in a Bland-
Altman plot to identify patterns in the difference between
the two measures. The biggest differences between median
eigenvector and PageRank centrality were then calculated,
and the top 30 parcels with either higher PR or higher EC
were tabulated. Pairwise Mann-Whitney U Tests were per-
formed to compare PR and EC for each parcel within a given
network across individuals. A derivative measure, the eigen-
vector-PageRank difference (EP difference) was calculated

for each parcel and ranked in each individual. The EP differ-
ence and clustering coefficient were next transformed into
categorical variables through division into tertiles (high:
ranks 1-126, mid: ranks 127-253, low: ranks 245-379). A
chi-square test of association and a post-hoc Cramer’s V
were performed on the rank of every parcel for each indi-
vidual (30,699 ranks). Post-hoc pairwise Chi-square analy-
ses between each group was performed and standardized
residuals and Bonferroni-corrected p values were calculated
to identify group differences. Heatmaps were generated for
each measure to discern patterns across individuals. All
analysis was performed in R version 4.1.2.

Results
Subject demographics

The average age (+SD) for the 81 participants was 27 +
6.75. 42 (51.9%) were female, and 39 (48.1%) were male.
All participants were right-handed. Additional available
demographic data were limited.

PageRank centrality and eigenvector centrality
identify distinct regions

Median eigenvector and PageRank ranks showed a strong
positive correlation (p=0.83, p < 0.001), though there were
clear outliers (Fig. la). A Bland-Altman plot of the ranks
of the two measures for each parcel across 81 individuals
showed a diamond shape with a mean difference of 0 +
181.9 (Fig. 1b). The bias of 0 was likely due to each measure
sometimes being higher than the other, and the wide limits
of agreement suggest a considerable degree of discrepancy.
Nonetheless, the two measures tended to diverge at middle-
ranking parcels, suggest discrepancy, while parcels at the
extreme ranks (top or bottom ranks) tended to have a similar
PageRank and eigenvector.

When the EC and PR ranks for each parcel were split by
the core network affiliation of each parcel for all 81 sub-
jects, pairwise Mann-Whitney U tests revealed a significant
difference in EC and PR in the visual (W = 8,558,438, p
< 0.001) and limbic networks (W = 1,670,178, p < 0.001
), with higher EC rank than PR. In contrast, parcels in the
CEN (W =13,121,829, p < 0.001), DMN (W = 23,176,330,
p < 0.001), and SN (W = 8,586,528, p < 0.001) tended to
have a greater PR than EC (Fig. 1¢). Subcortical structures
tended to rank higher than parcels in other networks. The
wide whiskers of the plots indicated a high level of interin-
dividual variability, making it difficult to discern meaningful
group-level patterns.

The interindividual variation became clear when we
plotted PageRank and eigenvector for all 81 subjects
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Bland-Altman Plot of
PageRank and
Eigenvector Centrality

Correlation between
PageRank and
Eigenvector Centrality

a b
=083, p<0.001 8
] E
o [l
E % 2000
S
< (5]
4 c
g g
& z o
i @
H CEO .
= £
o
0 100 200 300
Median PageRank Rank Average Centrality
PageRank Ranks Eigenvector Ranks Eigenvector Ranks
Sorted by Median Sorted by Median Sorted by Median
d PageRank e Eigenvector f PageRank

Parcel

Subject

Subject Subject

in a heatmap, ordered by the respective median rank
(Fig. 1d—f). Top and bottom-ranking parcels were visually
consistent across individuals (Fig. 1g—j), whereas most
variation was qualitatively seen in the middle of the heat-
map (Fig. 1d-f). Ranking eigenvector by the median Pag-
eRank in a heatmap highlighted the disparity between the
two measures, with a “banding” effect consistent with par-
cels ranking higher in eigenvector than PageRank (Fig. 11).
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Differences between PageRank and eigenvector
centralities

The difference between the ranks of the PageRank and eigen-
vector centralities for each parcel were calculated to identify
the most discrepant parcels between the two measures. A heat-
map of the ranked differences between eigenvector and Pag-
eRank (EP difterence) showed some interindividual variation
in terms of the degree to which the two centralities differed
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«Fig.1 Comparing eigenvector and PageRank centrality. a Median
PageRank and eigenvector rank of all 379 parcels from 81 subjects
showed a strong positive correlation. b A Bland-Altman plot of the
average of the two values against the ditference between the two val-
ues for each parcel across 81 subjects (30,699 data points) demon-
strated a diamond shape with a mean difference of 0 + 181.9. ¢ A
boxplot comparing eigenvector and PageRank ranks by network
affiliations, plotted using all 30,699 data points, revealed insignificant
differences between the two measures by network. d A heatmap of
the PageRank rank for all 379 parcels across 81 subjects, ranked by
the median PageRank rank of each parcel, from the highest ranking
(blue) to lowest (yellow). e A heatmap of the eigenvector rank for
all 379 parcels across 81 subjects, ranked by the median eigenvector
rank of each parcel, from the highest ranking (blue) to lowest (yel-
low). f A heatmap of the eigenvector rank for all 379 parcels across
81 subjects, ranked by the median PageRank rank of each parcel,
from the highest ranking (blue) to lowest (yellow). Zoomed in views
of the top and bottom of the heatmaps of PageRank rank (g-h) and
eigenvector rank (i—j) are provided to demonstrate a closer view of
any the amount variation specifically for the top and bottom 30 par-
cels for each measure. p-values in panel a represent correlations
between metrics studied. CEN central executive network; DAN dorsal
attention network; DMN default mode network; LN limbic network;
SC subcortical network; SMN sensorimotor network; SN salience net-
work; VN visual network

for each parcel (Fig. 2a), though parcels at each extreme were
again largely consistent. To confirm this, we ranked the median
EP difference for the 379 parcels and plotted this against the
IQR of the EP ditterence for each parcel (Fig. 2b). This pro-
duced a parabolic plot showing an increase in variability of
EP difference for the middle ranking parcels, whereas parcels
with the highest and lowest median EP difference had lower
variability (R*= 0.32).

Looking at the top 30 discrepant parcels (Table 1), parcels
in the VN, LN, SMN, and specific aspects of the DMN had
higher Eigenvector centrality compared to PageRank (Fig. 2c).
Higher values of eigenvector centrality suggests these parcels
demonstrated more connecting paths to regions which be also
of high degree (i.e., to highly connected regions). Anatomi-
cally, these parcels tended to be located in primary/unimodal
areas within parietal, medio-temporal and temporooccipital
regions (Fig. 2d). Ten parcels in the top 30 were only present
unilaterally.

In contrast, parcels which had higher PageRank compared
to eigenvector centrality were in the Auditory SMN, CEN,
SN, DAN, and to a lesser extent in the SMN (Fig. 2e). Ana-
tomically, these regions tended to be located in multi-modal
association areas within the temporal, insular, supramarginal,
cingulate, and frontal cortices (Fig. 2f). Out of the top 30, 9
parcels were present bilaterally, while 12 parcels were only
left-sided.

Relationship between EP difference and clustering
coefficient

Parcels with a high EP difference are regions with a high
number of connections which may be with high degree
nodes (high eigenvector), but when these connections are
scaled by the degree of their neighbors, their PageRank cen-
trality is reduced. We hypothesized that these parcels may
potentially be redundant regions of the brain — parcels which
could be sacrificed in surgery without inflicting noticeable
damage, or with a high potential for functional recovery. In
order to better understand this, we calculated the clustering
coefficient for each parcel across all patients, and ranked
the clustering coefficient of each parcel for each individual
(Fig. 3a). The clustering coefficient is a measure of how
many alternative paths exist between the neighbors of a
given parcel. Tracts can potentially easily bypass a parcel
with a high clustering coefficient, as its neighbors provide
alternative paths for information flow.

Right V8 and right EC had the highest median cluster-
ing coefficient in our cohort and the relationship between
clustering coefficient and EP difference was inconsistent
(Fig. 3b—c). At a group level however, median EP differ-
ence rank showed a weak positive correlation with median
clustering coefficient rank (p=0.25, p< 0.001) (Fig. 3d).
Given the individual variability of the EP difference, we
performed correlations between EP difference and clustering
coefficient for each individual. The average (+SD) Spear-
man correlation was 0.18 + 0.08 (p < 0.001), though across
individuals, it ranged from 0.01 to 0.35. When repeating the
analysis for the top 100 parcels with the highest median EP
difference, a stronger positive correlation was found at the
group level (p=0.50, p < 0.001) (Fig. 3e).

Finally, EP difference rank and clustering coefficient
rank were associated (X>=770.08, p < 0.001) when they
were categorized into tertiles. The strength of this asso-
ciation was however weak with a Cramer’s V of 0.112.
Post-hoc pairwise chi-square tests between each tertile of
EP difference and clustering coefficient nonetheless dem-
onstrated significant associations between most groups
(Table 2). The greatest residual value was for the associa-
tion between the lowest clustering coefficient tertile and
lowest EP difference tertile, suggesting that this pair con-
tributed most to the overall significance of the omnibus
Chi-square test. This was followed by the residual value
for the association between the highest tertile for both
variables, suggesting that there was a greater number of
parcels in the highest tertiles of EP difference and cluster-
ing coefficient than would be expected by chance, with
43.5% of parcels in the highest tertile of clustering coef-
ficient also having an EP difference in the highest tertile.
Plotting this relationship (Fig. 3f) demonstrated a trend
of decreasing number of parcels in the highest tertile of
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«Fig.2 Investigating the eigenvector-PageRank difference. a A heat-
map of the difference between the eigenvector rank and the PageRank
rank (EP difference), which is itself ranked from 1-379 (*1” being the
parcel with a high eigenvector rank but low PageRank rank, in blue,
and “379” a parcel with a high PageRank rank but low eigenvector
rank, in yellow). b A plot of median EP difference rank against their
interquartile range for each parcel demonstrated a parabolic shape,
indicative of increasing variability for mid-ranking parcels. ¢ Top 30
parcels with the highest EP difference showed little individual varia-
tion. d These parcels tended to be in the medial temporal and tempo-
rooccipital regions bilaterally. e Bottom 30 parcels, or those with the
highest PE difference (high PageRank low eigenvector) demonstrated
some variation but this was still more consistent than for middle rank-
ing parcels. f Anatomically, parcels with the highest PE difference
tended to be perisylvian, insular and cingulate structures

clustering coefficient moving from the highest EP differ-
ence tertile to the lowest. Therefore, while EP difference
is clearly different from clustering coefficient, there was
some relationship between the two measures in our cohort
for the regions with the highest or lowest EP differences,
which also varies greatly between individuals.

Discussion

Damage to traditionally defined eloquent regions does not
always lead to impairment, while in other patients, focal
lesions of areas that would not be defined as eloquent can
lead to unexpected cognitive deficits not associated with
that region’s functionality [28-30]. Consequently, there is
a need to continually assess measures which may improve
our modelling of brain activity on an individual level, pos-
sibly from a network perspective. Here, we present data
that two graph theory measures, PageRank (PR) and eigen-
vector (EC) centrality, can reveal important neuroanatomi-
cal features of the brain connectome with some unique
difterences which may be revealed when studied together.
Areas of high EC and low PR could better identify primary
and unimodal association areas compared to areas of high
PR and low EC which seemed to favor more integrative,
multimodal association cortices. While we hypothesized
that the mismatch between these two metrics (“EP dif-
ference”) could identify possibly redundant areas of the
brain, a relatively weak relationship was found between
EP difference and clustering coefficient suggesting that EP
difference may not be optimal to identify individual par-
cellations which are surrounded by an increased number
alternate paths. The current results, while purely theoreti-
cal, highlight the feasibility of examining varying graph
theory metrics in combination to reveal unique topological
characteristics of the brain connectome related to topics
of immense interest in the neurosurgical field, such as elo-
quence and redundancy.

Differences between PageRank and eigenvector

Applying different measures of centrality, or only relying on
degree centrality, is a common technique described in the
literature to identify hub nodes [15, 31]. In particular, both
eigenvector (EC) and PageRank (PR) centrality have been
well described mathematically [32-34]. They are closely
related measures which can identify hub regions but with
some important mechanistic differences: EC places more
importance on nodes which are connected to more highly
connected nodes, while PR is a is a derivative of EC which
which scales the influence of incoming connections by how
popular those sender nodes are. In other words, PR biases
against nodes with a single connection to a high degree
node unlike EC [20]. PR is in fact designed to be used for
directed networks, though it can also be used for assessing
centrality based on brain connectivity by treating a brain
graph as a directed network with bidirectional edges [35].
While PR seems to provide clinically valuable information
about more unique brain regions [7, 20], the differences in
behavior between EC and PR need to be examined biologi-
cally with the goal of clinical application, rather than just
mathematically. However, the limited understanding of the
neuroanatomical features of these measures has prevented
their widespread acknowledgement and clinical study in
fields such as neurosurgery to date.

Areas of high eigenvector or PageRank centrality

Higher EC compared to PR may indicate the presence of
primary/unimodal association cortices which are involved in
immediate sensory input. We found these regions generally
included several parts of the visual and limbic networks as
well as some parahippocampal regions [36]. Visual areas
found in the highest quintile of eigenvector centrality (areas
R_V8,R_VMVI,R_PIT and R_VVC) are all located in the
basal surface of the occipital lobe, and are all connected
through the vertical occipital fasciculus (VOF) as previously
shown [37]. The VOF connects the dorsal and ventral visual
streams and is thought to be crucial for visual processing as
it integrates the visual cortex. Interestingly, Jitsuishi et al.
found that the VOF’s fiber tracts are rightward lateralized
[16], which may be consistent with the slightly higher eigen-
vector ranks of the right visual parcellations in the current
work. Similarly, the superficial layers of the entorhinal cor-
tex of the limbic network are thought to send information to
more multi-modal association areas of the medial temporal
cortices, like the hippocampal formation, for memory forma-
tion and consolidation [38]. While there are limited studies
on the effects of lesions to the entorhinal cortex in humans,
the parahippocampal cortices demonstrate a similar role, and
damage to parahippocampal cortices has been associated
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Table 1 Differences in mean eigenvector centrality and PageRank centrality (parcels with a rank of at least 80 in either metric bolded)

PageRank and eigenvector

Higher PageRank Higher eigenvector
Parcellation Network PageRank rank Eigenvector Parcellation Network PageRank rank Eigen-
rank vector
rank
L_A4 Auditory 31 214 R V8 Visual 298 66
L_AS5 Auditory 72 227 R_VMV3 Visual 320 97
R_A4 Auditory 36 175 R_EC Limbic 273 76
L_STV DMN 139 262 R_VMV2 Visual 338 152
R_AS5 Auditory 79 197 R_VMV1 Visual 260 78
L OP4 Sensorimotor 132 248 L EC Limbic 261 88
L_PSL Auditory 148 262 R_PHA2 DMN 345 184
L_TEla DMN 45 158 R_PHA3 DMN 332 180
L_PF DAN 58 170 R_Pallidum Subcortical 241 90
L_23d CEN 165 277 L_Pallidum Subcortical 247 97
L_TEIm CEN 54 163 R 3a Sensorimotor 243 97
R 9m DMN 48 154 R_PreS DMN 321 184
L. PHT Language/DAN 66 172 L VMV3 Visual 341 207
L Pol2 Salience 94 196 R 3b Sensorimotor 209 80
L_p24 CEN 202 303 L_V8 Visual 217 93
L_PBelt Language/auditory 232 332 R_PHA1 DMN 161 43
R_Pol2 Salience 64 163 L 5m Sensorimotor 232 118
L RI Auditory 192 291 R ProS Visual 337 228
L_d23ab DMN 208 307 L_VMVI Visual 305 199
L_TA2 DMN 228 325 R_PIT Visual 148 48
L_PFop Salience 152 247 R H Subcortical 283 187
L PFm CEN/language 43 133 R VVC Visual 112 21
R_PF DAN 75 165 L_PHA1 DMN 169 79
R_PBelt Auditory 219 308 L_PHA3 DMN 189 100
L_TE2a CEN 63 147 L_3a Sensorimotor 244 155
R OP4 Sensorimotor 138 222 L V3A Visual 223 140
R_p24 CEN 216 300 R_6a Sensorimotor 257 174
L 9m DMN 55 138 R 5m Sensorimotor 154 75
R_TA2 DMN 191 272 R 5L Sensorimotor 132 58
L_p24pr Salience 213 294 L VMV2 Visual 365 291

with impairment in visuospatial memory [39], independent
of damage to the hippocampus.

Many of the above regions have been recently described
as lower in a proposed hierarchy for the cortical organization
of large-scale connectivity for cognition. As defined by Mar-
gulies et al. [36], a primary/unimodal-transmodal gradient of
cortical processing may exist in order to appropriately pro-
cess transmodal information after immediate sensory input.
At one end of this spectrum lies primary/unimodal regions,
which are often connected to higher regions for multimodal
integration, however, are surrounded by regions with similar
roles in unimodal processing. Based on this model, high EC
and low PR most closely indicated the presence of lower pri-
mary/unimodal association regions, such as occipital visual
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regions and regions in or bordering the parahippocampal
cortices. While damage to these regions may lead to cogni-
tive deficits, they are not often areas considered eloquent in
neurosurgery as they do not lead to gross functional impair-
ment or may be more amendable to compensatory takeover
by analogue regions.

Differently, areas of high PR and low EC best identified
parcellations which are often located in more multi-modal
association cortices. Specifically, these parcellations are
often described as part of the higher canonical resting state
networks (DMN, CEN, SN), which the other networks gen-
erally align themselves in order to subserve complex cog-
nitive functions [5, 36]. For instance, numerous temporal
regions were identified (e.g., areas TEla, TE1m and TE2a)
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Fig.3 Comparing EP difference and clustering coefficient. a A heat-
map of the clustering coefficient rank for all 379 parcels across 81
subjects, ranked by the median clustering coefficient rank of each par-
cel, from the highest ranking (blue) to lowest (yellow). b A heatmap
of the clustering coefficient rank for all 379 parcels across 81 sub-
jects, ranked by the median EP difference rank of each parcel, from
the highest ranking (blue) to lowest (yellow). ¢ A zoomed in view of
clustering coefficient rank for the top 30 regions as ranked by median

which have been implicated in visual working memory and
storing multimodal semantic representations after basic vis-
ual processing in the occipital visual areas [40]. Other areas
identified, such as area 9 m of the superior frontal gyrus
[41], area Pol2 of the posterior insula [42], and area PFm
of the lateral parietal lobe [43], have all also demonstrated
important roles in the complex functions like memory and
language. Our team has previously found that regions of
high PageRank centrality associates closely with what neu-
rosurgeons have traditionally considered “eloquent” accord-
ing to the Spetzler-Martin arteriovenous malformations clas-
sification system [2], more so than eigenvector centrality
[20]. However, few studies have correlated these analyses
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clustering coefficient of each parcel is provided to demonstrate
a closer view of the amount of variation. The relationship between
median EP ditference rank and median clustering coefficient rank for
all regions (d) and only the top 100 regions (e). f Chi-square analy-
sis of EP rank tertile according to clustering coefficient rank tertiles.
p-values in panel d-e represent correlations between metrics studied
and p-values in panel f are for chi-square analyses

with clinical outcomes and as such these hypotheses remain
purely speculative.

Combining EC and PC measures together: the EP
difference

While EC and PC measures demonstrated a high degree of
similarity in top and bottom ranking parcels as expected, we
hypothesized that using these two measures together (“EP
difference”) may offer complementary information with dis-
tinct neuroanatomical functions which is of clinical utility.
According to this model (Fig. 4). regions which have high
eigenvector centrality, but low PageRank centrality (high
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Table 2 The EP difference and clustering coefficient were next trans-
formed into categorical variables through division into tertiles (high:
ranks 1-126, Mid: ranks 127-253, Low: ranks 245-379)

EP difference rank Clustering coefficient rank tertile
tertile - -

Low Mid High
Low
Column % 377 343 26.8
Std. Res 26.2 - 6.1 —-20.2
Adj. p-value <0.001 <0.001 <0.001
Mid
Column % 36.5 345 29.7
Std. Res —10.1 25 7.7
Adj. p-value <0.001 0.124 0.003
High
Column % 25.8 31.2 43.5
Std. Res —16.2 3.6 12.6
Adj. p-value <0.001 <0.001 <0.001

EP difference) may be areas of high connectivity specifi-
cally to more connected nodes which integrate information
from a number of other regions, given that they have low
PageRank which biases against these connections. There-
fore, high EP measurements could theoretically reflect high
levels of degeneracy. In other words, since they are largely
unimodal/primary modal areas that connect to integrative
multi-modal areas, but do not partake in multimodal pro-
cessing, then functional compensation may occur by bypass-
ing these regions if damaged. Alternatively, a region with
a low EP difference may reflect nodes with more unique
connections and not just to highly connected nodes, or other
integrative areas. Therefore, these regions may be consid-
ered “eloquent” [7, 20], as despite having fewer influential
connections, these connections possibly facilitate important
functions after integrating information from a number of
regions.

However, while we found that some areas with the high-
est EP difference also tended to have an increased number
of alternative paths between their neighbors (high cluster-
ing coefficient), the relationship was relatively weak at the
group level and had significant variation on an interindi-
vidual basis. A measure which can identify regions with a
high level of redundancy would be of immense interest in
the neurosurgical community as it could identify candidates
for neuroplastic recovery, either through neurorehabilita-
tion or transcranial magnetic stimulation (TMS). Although,
the current results do not support EP difference in its cur-
rent form as such a clinical tool. Further investigations are
necessary to determine the information provided by the EP
difference, and these should evaluate other measures of
redundancy which may be better candidates for assessing
this relationship.

@ Springer

Hubness as a measure of eloquence

The diversity of responses to focal lesions in neurosurgery
suggest that resulting impairments across a variety of cogni-
tive domains may be explained by extending the definition of
“eloquence” to “hubness”. Hub regions demonstrate greater
susceptibility to neurological disease, and simultaneously
when disease impinges on these regions, there is greater
ensuing damage. Hub nodes make several long-distance con-
nections which are susceptible to injury; they lie on many
shortest paths [44], allowing pathology to spread easily
to these nodes [45]; and they may have higher metabolic
requirements [46], making them susceptible to metabolic
stress. Furthermore, as an empiric measure, cognitive recov-
ery of patients with ischemic stroke was predicted using a
score of the extent to which hub nodes were affected [47].
Infarcts in hub regions were associated with reduced global
efficiency, while strokes in non-hub regions were predictors
of better cognitive function one year after stroke. Further
clinical studies are however required to compare centrality
measures and arrive at a consortium definition of hubness
for clinical practice.

Clinical translation and future directions

Our data raise the need for further investigation into the
meaning and surgical utility of centrality measures. It is
however difficult to judge the utility of these measures with-
out clinical studies. While the EP difference shows some
trends in healthy individuals, it also demonstrates a signifi-
cant level of variability, and given our limited sample size,
it is not possible to derive clinical meaning to this metric
without surgical studies. Although the degree to which the
current results support further clinical study is limited. Fur-
thermore, although graph theory can be done on individuals
whose neuroanatomy is distorted by complex brain tumors,
our cohort did not include individuals with diverse pathol-
ogy. For instance, varying tumor types and tumor locations
may impact the way EC and PR models specific neuroana-
tomic substrates and their interconnecting paths, which may
further alter structure-function relationships in the brain like
redundancy, degeneracy, and eloquence differently [48].
Therefore, our inferences about the utility of these measures
in patients with brain tumors remains purely speculative.
Hypotheses from the current study were largely moti-
vated by the desire to expand our understanding of trans-
disciplinary tools like graph theory which can model
neuroanatomical features of the brain connectome and ulti-
mately be used in neurosurgery. While our work may pro-
vide an empiric and hypothetical basis which may assist
others in expanding the clinical utility of these tools in the
future, our results are far from capable of currently inform-
ing current neurosurgical decisions. Importantly, some
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Fig.4 EP difference to predict neurological redundancy. An example
of an undirected, unweighted graph is demonstrated to model how EP
difference may be utilized clinically (a). The purple node is the parcel
with the highest PageRank, whereas the blue node has the highest EP
difference, with the highest Eigenvector centrality in the network. In
the top path, when the purple node is damaged (b), the connections to
its neighbors are subsequently disrupted, and may be further damaged
through retrograde degeneration (red), ¢ subsequently jeopardizing

graph theory metrics may not yet be completely optimized
for analysis with undirected brain networks despite any
mechanistic fitting. Logically, there is a strong need to next
link many graph theory measures in retrospective clinical
studies to understand how strongly they correspond with
clinical substrates in pathological specimens.
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